)]:¥8 DB2 Universal Database for z/0S

Version 8

Application Programming
and SQL Guide

SC18-7415-03

m DB2 Universal Database for z/0S

Version 8

Application Programming
and SQL Guide

SC18-7415-03

Note

Before using this information and the product it supports, be sure to read the general information under
1101

Fourth Edition, Softcopy Only (February 2006)

This edition applies to Version 8 of IBM DB2 Universal Database for z/OS (DB2 UDB for z/OS), product number
5625-DB2, and to any subsequent releases until otherwise indicated in new editions. Make sure you are using the
correct edition for the level of the product.

This softcopy version is based on the printed edition of the book and includes the changes indicated in the printed
version by vertical bars. Additional changes made to this softcopy version of the book since the hardcopy book was
published are indicated by the hash (#) symbol in the left-hand margin. Editorial changes that have no technical
significance are not noted.

This and other books in the DB2 for z/OS library are periodically updated with technical changes. These updates
are made available to licensees of the product on CD-ROM and on the Web (currently at
www.ibm.com/software/data/db2/zos/library.html). Check these resources to ensure that you are using the most
current information.

© Copyright International Business Machines Corporation 1983, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book

Who should read this book .
Terminology and citations

How to read the syntax diagrams .
Accessibility . .
How to send your Comments .

Summary of changes to this book .

. Xix

. Xix
. Xix

. XX
. xxi
. xxi

. XXxiii

Part 1. Using SQL queries.

Chapter 1. Retrlevmg data .
Result tables
Data types . .
Selecting columns: SELECT
Selecting all columns: SELECT * .
Selecting some columns: SELECT column-name
Selecting derived columns: SELECT expression .
Eliminating duplicate rows: DISTINCT
Naming result columns: AS
Selecting rows using search conditions: WHERE
Putting the rows in order: ORDER BY .
Specifying the sort key
Referencing derived columns
Summarizing group values: GROUP BY
Subjecting groups to conditions: HAVING .
Merging lists of values: UNION .
Using UNION to eliminate duplicates
Using UNION ALL to keep duplicates
Creating common table expressions: WITH .
Using WITH instead of CREATE VIEW .
Using common table expressions with CREATE VIEW
Using common table expressions when you use INSERT
Using recursive SQL
Accessing DB2 data that is not in a table
Using 15-digit and 31-digit precision for decimal numbers
Finding information in the DB2 catalog .
Displaying a list of tables you can use
Displaying a list of columns in a table

Chapter 2. Working with tables and modlfylng data
Working with tables .
Creating your own tables: CREATE TABLE
Working with temporary tables.
Dropping tables: DROP TABLE.
Working with views
Defining a view: CREATE VIEW
Changing data through a view .
Dropping views: DROP VIEW .
Modifying DB2 data
Inserting rows: INSERT
Selecting values as you insert: SELECT from INSERT
Updating current values: UPDATE .
Deleting rows: DELETE

© Copyright IBM Corp. 1983, 2006

—

O 0NN U U W

iii

Chapter 3. Joining data from more than one table . . 39
Inner join . . 40
Full outer join .41
Left outer join .42
Right outer join . S . . 43
SQL rules for statements conta1n1ng join operatrons . .44
Using more than one join in an SQL statement . . 45
Using nested table expressions and user-defined table funct1ons in]orns . . 46
Using correlated references in table specifications in joins . . 47
Chapter 4. Using subqueries . 49
Conceptual overview . . 49
Correlated and uncorrelated subquer1es . 50
Subqueries and predicates . 50
The subquery result table. . . 50
Tables in subqueries of UPDATE, DELETE and INSERT statements . 51
How to code a subquery . e . 51
Basic predicate . 51
Quantified predicate : ALL ANY or SOME . 51
IN keyword o . 52
EXISTS keyword . 53
Using correlated subqueries . . . 53
An example of a correlated subquery . 53
Usrng correlation names in references . . 54
Using correlated subqueries in an UPDATE statement . . 55
Using correlated subqueries in a DELETE statement . . 56
Chapter 5. Using SPUFI to execute SQL from your workstation . 59
Allocating an input data set and using SPUFI . . 59
Changing SPUFI defaults . o . 60
Changing SPUFI defaults - panel 2 . 61
Entering SQL statements . . . 62
Using the ISPF editor . . 62
Retrieving Unicode UTF-16 graphrc data . 63
Entering comments . . 63
Setting the SQL terminator character . . 63
Controlling toleration of warnings . 64
Processing SQL statements . 64
When SQL statements exceed resource l1m1t thresholds . 65
Browsing the output . . 66
Format of SELECT statement results . . 67
Content of the messages . . 68
Part 2. Coding SQL in your host application program . 69
Chapter 6. Basics of coding SQL in an application program. . 73
Conventions used in examples of coding SQL statements . .74
Delimiting an SQL statement . .74
Declaring table and view definitions . .75
Accessing data using host variables, variable arrays and structures .75
Using host variables .76
Using host variable arrays . 82
Using host structures . . . 86
Checking the execution of SQL statements . . . 87
Using the SQL communication area (SQLCA) . . 87
SQLCODE and SQLSTATE . . 88
The WHENEVER statement . . . 88
Handling arithmetic or conversion errors . 89
The GET DIAGNOSTICS statement . 90

iv Application Programming and SQL Guide

Calling DSNTIAR to display SQLCA fields .

Chapter 7. Using a cursor to retrieve a set of rows.

Accessing data by using a row-positioned cursor .
Step 1: Declare the cursor.
Step 2: Open the cursor . . .
Step 3: Specify what to do at end- of data .
Step 4: Execute SQL statements
Step 5: Close the cursor . .
Accessing data by using a rowset—posmoned cursor
Step 1: Declare the rowset cursor .
Step 2: Open the rowset cursor
Step 3: Specify what to do at end-of- data for a rowset cursor
Step 4: Execute SQL statements with a rowset cursor .
Step 5: Close the rowset cursor
Types of cursors .
Scrollable and non—scrollable cursors
Held and non-held cursors .
Examples of using cursors .

Chapter 8. Generating declarations for your tables usmg DCLGEN

Invoking DCLGEN through DB2I .
Including the data declarations in your program
DCLGEN support of C, COBOL, and PL/I languages .

Example: Adding a table declaration and host-variable structure to a hbrary

Step 1. Specify COBOL as the host language . .
Step 2. Create the table declaration and host structure.
Step 3. Examine the results .

Chapter 9. Embedding SQL statements in host Ianguages

Coding SQL statements in an assembler application
Defining the SQL communications area.
Defining SQL descriptor areas .
Embedding SQL statements
Using host variables .
Declaring host variables .
Determining equivalent SQL and assembler data types
Determining compatibility of SQL and assembler data types
Using indicator variables . .
Handling SQL error return codes.
Macros for assembler applications .
Coding SQL statements in a C or C++ apphcatlon .
Defining the SQL communication area .
Defining SQL descriptor areas .
Embedding SQL statements .
Using host variables and host variable arrays
Declaring host variables .
Declaring host variable arrays .
Using host structures .
Determining equivalent SQL and C data types
Determining compatibility of SQL and C data types
Using indicator variables and indicator variable arrays
Handling SQL error return codes.
Coding considerations for C and C++ .
Coding SQL statements in a COBOL application.
Defining the SQL communication area .
Defining SQL descriptor areas .
Embedding SQL statements
Using host variables and host Varlable arrays
Declaring host variables .

. 94

. 99

.99
.99

. 101
. 101
. 102
. 104
. 104
. 104
. 104
. 105
. 105
. 109
. 109
. 109
. 118
. 120

. 127
. 128
. 128
. 129
. 130
. 130
. 131
. 132

. 135
. 135
. 135
. 136
. 137
. 139
. 139
. 142
. 146
. 147
. 148
. 149
. 149
. 149
. 150
. 151
. 152
. 153
. 159
. 164
. 166
. 172
. 173
. 175
. 177
. 177
. 177
. 178
. 178
. 182
. 183

Contents

A\

Declaring host variable arrays .
Using host structures . .
Determining equivalent SQL and COBOL data types .
Determining compatibility of SQL and COBOL data types
Using indicator variables and indicator variable arrays
Handling SQL error return codes. .
Coding considerations for object-oriented extensmns in COBOL
Coding SQL statements in a Fortran application .
Defining the SQL communication area .
Defining SQL descriptor areas .
Embedding SQL statements
Using host variables .
Declaring host variables .
Determining equivalent SQL and Fortran data types
Determining compatibility of SQL and Fortran data types
Using indicator variables . e
Handling SQL error return codes.
Coding SQL statements in a PL/I applrcatron
Defining the SQL communication area .
Defining SQL descriptor areas .
Embedding SQL statements .
Using host variables and host variable arrays
Declaring host variables .
Declaring host variable arrays .
Using host structures . .
Determining equivalent SQL and PL / I data types .
Determining compatibility of SQL and PL/I data types
Using indicator variables and indicator variable arrays
Handling SQL error return codes.
Coding SQL statements in a REXX apphcat1on
Defining the SQL communication area .
Defining SQL descriptor areas . .
Accessing the DB2 REXX Language Support apphcatlon programmmg mterfaces
Embedding SQL statements in a REXX procedure . B
Using cursors and statement names . e
Using REXX host variables and data types
Using indicator variables
Setting the isolation level of SQL statements in a REXX procedure

Chapter 10. Using constraints to maintain data integrity .
Using check constraints . .

Check constraint Con51derat10ns .

When check constraints are enforced

How check constraints set CHECK-pending status
Using referential constraints e

Parent key columns . .

Defining a parent key and a umque 1ndex

Defining a foreign key

Referential constraints on tables w1th multllevel securlty w1th row- level granularlty.

Using informational referential constraints.

Chapter 11. Using DB2- generated values as keys
Using ROWID columns as keys
Defining a ROWID column.
Direct row access . .
Using identity columns as keys
Defining an identity column
Parent keys and foreign keys . .
Using values obtained from sequence ob]ects as keys .
Creating a sequence object .

vi Application Programming and SQL Guide

. 190
. 196
. 201
. 205
. 207
. 208
. 210
. 211
. 211
. 211
. 212
. 214
. 214
. 216
. 218
. 219
. 220
. 221
. 221
. 221
. 222
. 224
. 225
. 228
. 231
. 232
. 236
. 237
. 238
. 240
. 240
. 241
. 241
. 243
. 244
. 245
. 248
. 249

. 251
. 251
. 251
. 252
. 252
. 253
. 253
. 254
. 256
. 258
. 259

. 261
. 261
. 261
. 262
. 262
. 263
. 264
. 265
. 265

Referencing a sequence object . . 266
Keys across multiple tables . . 266
Chapter 12. Using triggers for active data . . 269
Example of creating and using a trigger . 269
Parts of a trigger . . 271
Trigger name . 271
Subject table. . 271
Trigger activation time . 271
Triggering event . 271
Granularity . . 272
Transition variables . 273
Transition tables . 274
Triggered action . . 275
Invoking stored procedures and user—defmed functrons from trlggers . 277
Passing transition tables to user-defined functions and stored procedures . 278
Trigger cascading . . . 278
Ordering of multiple trlggers . . . 279
Interactions between triggers and referentlal Constramts . . 280
Interactions between triggers and tables that have multilevel securlty w1th row—level granularrty . 281
Creating triggers to obtain consistent results . . 282
Part 3. Using DB2 object-relational extensions . . . 285
Chapter 13. Introduction to DB2 object-relational extensions . . 287
Chapter 14. Programming for large objects . 289
Introduction to LOBs . . . 289
Declaring LOB host variables and LOB locators . 292
LOB materialization . o . 296
Using LOB locators to save storage 297
Deferring evaluation of a LOB expression to 1mprove performance . 297
Indicator variables and LOB locators . 299
Valid assignments for LOB locators . . 300
Avoiding character conversion for LOB locators . 300
Chapter 15. Creating and using user-defined functions . 301
Overview of user-defined function definition, implementation, and invocation . 301
Example of creating and using a user-defined scalar function . 302
User-defined function samples shipped with DB2 . 303
Defining a user-defined function . . . 304
Components of a user-defined functlon deflmtlon . . 304
Examples of user-defined function definitions . 306
Implementing an external user-defined function. . 308
Writing a user-defined function . . . 308
Preparing a user-defined function for executlon . 340
Testing a user-defined function . 342
Implementing an SQL scalar function . 345
Invoking a user-defined function . . . 345
Syntax for user-defined function mvocatlon . 345
Ensuring that DB2 executes the intended user-defined functlon . 346
Casting of user-defined function arguments . . . 352
What happens when a user-defined function abnormally termmates . . 353
Nesting SQL statements . . . 353
Recommendations for user-defined functlon 1nvocat10n . 355
Chapter 16. Creating and using distinct types . 357
Introduction to distinct types . . . 357
Using distinct types in application programs . . 358

Contents Vil

Comparing distinct types . 358
Assigning distinct types . . 359
Using distinct types in UNIONs . . 361
Invoking functions with distinct types . . 361
Combining distinct types with user-defined functlons and LOBS . 362
Part 4. Designing a DB2 database application . 367
Chapter 17. Planning for DB2 program preparatlon . . 37
Planning to process SQL statements 373
Planning to bind . . 374
Binding DBRMs with packages and plans . 374
Planning for changes to your application . . 376
Chapter 18. Planning for concurrency . . 383
Definitions of concurrency and locks . 383
Effects of DB2 locks . . 384
Suspension . . 384
Timeout . . 384
Deadlock . e . 385
Basic recommendations to promote concurrency . . 387
Recommendations for database design . . 388
Recommendations for application design . . 389
Aspects of transaction locks . 392
The size of a lock . . 392
The duration of a lock . 394
The mode of a lock . 394
The object of a lock . 397
Options for tuning locks. . 398
Bind options. . . 398
Isolation overriding w1th SQL statements . . 411
The LOCK TABLE statement . . 412
Access paths . 413
LOB locks .o . 415
Relationship between transactlon locks and LOB locks . 415
Hierarchy of LOB locks . . . 416
LOB and LOB table space lock modes . . 416
LOB lock and LOB table space lock duration . . 417
Instances when LOB table space locks are not taken . 418
The LOCK TABLE statement for LOBs . . 418
Chapter 19. Planning for recovery . 419
Unit of work in TSO batch and online . . 420
Unit of work in CICS. . . 420
Unit of work in IMS online programs . . . 421
Planning ahead for program recovery: Checkpornt and restart . . 423
When are checkpoints important? . 424
Checkpoints in MPPs and transaction- orlented BMPs . . 424
Checkpoints in batch-oriented BMPs . 425
Specifying checkpoint frequency 426
Unit of work in DL/T and IMS batch programs . . 426
Commit and rollback coordination . 426
Restart and recovery in IMS batch . . 427
Using savepoints to undo selected changes wrthm a umt of work . . 427
Chapter 20. Planning to access distributed data . 429
Planning for DRDA and DB2 private protocol access . . 429
Advantages of DRDA access . . 430
Moving from DB2 private protocol access to DRDA access . 430

viii Application Programming and SQL Guide

Bind processes for DRDA and DB2 private protocol access432

Precompiler and bind options for DRDA access .433
Coding methods for distributed data . . . Lo 43
Using three-part table names to access d1str1buted data e 1)
Using explicit CONNECT statements to access distributed data438
Coordinating updates to two or more data sources. .440
Working without two-phase commit. . . . e Y10
Update restrictions on servers that do not support two—phase commlt e 7 |
Forcing update restrictions by using CONNECT (Type 1) Oy |
Maximizing performance for distributed data . . A Y
Coding efficient queries . . . B Y
Maximizing LOB performance in a dlstrlbuted env1ronment R Y 2
Using bind options to improve performance for distributed app11cat10ns e)
Using block fetch in distributed applications .446
Limiting the number of DRDA network transmissions.449
Limiting the number of rows returned to DRDA clients452
Working with distributed data. .45
SQL limitations at dissimilar servers.o .453
Executing long SQL statements in a dlstrlbuted env1ronment T
Retrieving data from ASCII or Unicode tables . . . e 17
Accessing data with a scrollable cursor when the requester is down—level e 0}
Accessing data with a rowset-positioned cursor when the requester is down-level 455
Maintaining data currency by using cursors .455
Copying a table from a remote location. .45
Transmitting mixed data. .45

Part 5. Developing your application457

Chapter 21. Preparing an application program torun45

Steps in program preparation e 10
Step 1: Process SQL statements . . . a1
Step 2: Compile (or assemble) and lmk-edlt the apphcatlon e
Step 3: Bind the application L L47
Step 4: Run the application. . . e)

Using JCL procedures to prepare apphcatlons e)
Available JCL procedures . . . e
Including code from SYSLIB data sets e V4
Starting the precompiler dynamically . . . e)
An alternative method for preparing a CICS program . Sb00
Using JCL to prepare a program with object-oriented extensmns !

Using ISPF and DB2 Interactive .b02
DB2l help . . . 104
DB2I Primary Option Menu e 04

Chapter 22. Testing an appllcatlon program)

Establishing a test environment 0
Designing a test data structure .b05
Filling the tables with testdata .b07

Testing SQL statements using SPUFL. .b08

Debugging your program .bo8
Debugging programs in TSO .b08
Debugging programs inIMS .50
Debugging programs in CICS .bIO

Locating the problem. . . . Sb14
Analyzing error and warning messages from the precompllerbl5
SYSTERM output from the precompiler .bl5
SYSPRINT output from the precompiler .ble

Chapter 23. Processing DL/l batch appllcatlons A |
Planning to use DL/I batch applications . . . v |

Contents 1X

Features and functions of DB2 DL/I batch support. . 521
Requirements for using DB2 in a DL/I batch job . 522
Authorization . . B . 522
Program design cons1derat10ns . 522
Address spaces . 522
Commits . . . 523
SQL statements and lMS calls . 523
Checkpoint calls . 523
Application program synchr0n1zat10n . 523
Checkpoint and XRST considerations . 523
Synchronization call abends . . . 524
Input and output data sets for DL/I batch]obs . . 524
DB2 DL/I batch input Lo . 524
DB2 DL/I batch output . . 526
Preparation guidelines for DL/I batch programs . 526
Precompiling e . 526
Binding . 526
Link-editing . 527
Loading and running . 527
Restart and recovery . . . 528
JCL example of a batch backout . . . 529
JCL example of restarting a DL/I batch job . 529
Finding the DL/I batch checkpoint ID . . 530
Part 6. Additional programming techniques . 531
Chapter 24. Coding dynamic SQL in appl|cat|on programs . 539
Choosing between static and dynamic SQL . 539
Flexibility of static SQL with host variables . 540
Flexibility of dynamic SQL . . 540
Limitations of dynamic SQL . 540
Dynamic SQL processing . 540
Performance of static and dynam1c SQL . 541
Caching dynamic SQL statements . 542
Using the dynamic statement cache . . 543
Using the statement cache table 545
Keeping prepared statements after commit pomts . . 545
Limiting dynamic SQL with the resource limit facility . . 547
Writing an application to handle reactive governing . 548
Writing an application to handle predictive governing. . . 548
Using predictive governing and down-level DRDA requesters . . 548
Using predictive governing and enabled requesters. . 548
Choosing a host language for dynamic SQL applications . . 549
Dynamic SQL for non-SELECT statements. . 549
Dynamic execution using EXECUTE IMMEDIATE . 550
Dynamic execution using PREPARE and EXECUTE . 551
Dynamic execution of a multiple-row INSERT statement . . 553
Using DESCRIBE INPUT to put parameter information in an SQLDA . 555
Dynamic SQL for fixed-list SELECT statements . e . 556
Declaring a cursor for the statement name. . 557
Preparing the statement . . 557
Opening the cursor . . . 558
Fetching rows from the result table . . 558
Closing the cursor 558
Dynamic SQL for varying-list SELECT statements . . 558
What your application program must do . . 558
Preparing a varying-list SELECT statement . 559
Executing a varying-list SELECT statement dynamlcally . 568
Executing arbitrary statements with parameter markers . . . 569
How bind options REOPT(ALWAYS) and REOPT(ONCE) affect dynam1c SQL. . 571

X Application Programming and SQL Guide

Using dynamic SQL in COBOL . 572
Chapter 25. Using stored procedures for client/server processing. . 573
Introduction to stored procedures . 573
An example of a simple stored procedure . . 574
Setting up the stored procedures environment . 578
Defining your stored procedure to DB2. . 579
Refreshing the stored procedures environment (for system adm1n1strators) . 583
Moving stored procedures to a WLM-established environment (for system admlnlstrators) . 584
Writing and preparing an external stored procedure . . 585
Language requirements for the stored procedure and its caller . . 585
Calling other programs . . 586
Using reentrant code e e . 586
Writing a stored procedure as a main program or subprogram . . 587
Restrictions on a stored procedure . . 589
Using COMMIT and ROLLBACK statements ina stored procedure . 590
Using special registers in a stored procedure . e . 590
Accessing other sites in a stored procedure . 593
Writing a stored procedure to access IMS databases . . 593
Writing a stored procedure to return result sets to a DRDA chent . 594
Preparing a stored procedure . . 595
Binding the stored procedure . . 596
Writing a REXX stored procedure . 597
Writing and preparing an SQL procedure . . 601
Comparison of an SQL procedure and an external procedure . 602
Statements that you can include in a procedure body . .o . . 603
Declaring and using variables, parameters, and conditions in an SQL procedure . . 605
Parameter style for an SQL procedure . . 606
Terminating statements in an SQL procedure . . 606
Handling SQL conditions in an SQL procedure . . 607
Examples of SQL procedures . . 611
Preparing an SQL procedure . . 613
Writing and preparing an application to use stored procedures . 625
Forms of the CALL statement . . . 625
Authorization for executing stored procedures . 627
Linkage conventions . . . 627
Using indicator variables to speed processmg . 647
Declaring data types for passed parameters . . 647
Writing a DB2 UDB for z/OS client program or SQL procedure to receive result sets . 652
Accessing transition tables in a stored procedure R . 658
Calling a stored procedure from a REXX procedure . 658
Preparing a client program . 662
Running a stored procedure . 663
How DB2 determines which version of a stored procedure to run. . . 664
Using a single application program to call different versions of a stored procedure . . 664
Running multiple stored procedures concurrently . . . 665
Running multiple instances of a stored procedure concurrently. . 666
Accessing non-DB2 resources . . 667
Testing a stored procedure . . . 668
Debugging the stored procedure as a stand alone program on a workstatlon . . 669
Debugging with the Debug Tool and IBM VisualAge COBOL . . 669

Debugging an SQL procedure or C language stored procedure with the Debug Tool and C/ C++ Product1v1ty
Tools for z/OS . e 670
Debugging with Debug Tool for z / OS 1nteract1vely and in batch mode . . 670
Using the MSGFILE run-time option e . 672
Using driver applications . . 673
Using SQL INSERT statements . 673
Chapter 26. Tuning your queries . . 675
General tips and questions . . 675
Contents X1

Is the query coded as simply as possible? .
Are all predicates coded correctly?
Are there subqueries in your query?.
Does your query involve aggregate functlons7 .
Do you have an input variable in the predicate of an SQL query’
Do you have a problem with column correlation? .
Can your query be written to use a noncolumn expression? .
Can materialized query tables help your query performance?
Does the query contain encrypted data?
Writing efficient predicates .
Properties of predicates .
Predicates in the ON clause .
General rules about predicate evaluatlon .
Order of evaluating predicates.
Summary of predicate processing.
Examples of predicate properties .
Predicate filter factors
Column correlation
DB2 predicate manipulation
Predicates with encrypted data
Using host variables efficiently
Changing the access path at run time .
Rewriting queries to influence access path selectlon
Writing efficient subqueries.
Correlated subqueries
Noncorrelated subqueries .
Conditions for DB2 to transform a subquery 1nt0 a join
Subquery tuning
Using scrollable cursors efﬁcrently . .
Writing efficient queries on tables with data—partltloned secondary 1ndexes.
Special techniques to influence access path selection
Obtaining information about access paths .
Fetching a limited number of rows: FETCH FIRST n ROWS ONLY
Minimizing overhead for retrieving few rows: OPTIMIZE FOR n ROWS
Favoring index access

Using the CARDINALITY clause to 1mpr0ve the performance of querles w1th user- deflned table functlon

references

Reducing the number of matchlng columns
Creating indexes for efficient star-join processing
Rearranging the order of tables in a FROM clause .
Updating catalog statistics .

Using a subsystem parameter .

Chapter 27. Using EXPLAIN to improve SQL performance .
Obtaining PLAN_TABLE information from EXPLAIN .
Creating PLAN_TABLE . .
Populating and maintaining a plan table
Reordering rows from a plan table
Asking questions about data access . .
Is access through an index? (ACCESSTYPE is I Il N or MX)
Is access through more than one index? (ACCESSTYPE=M) . .
How many columns of the index are used in matching? (MATCHCOLS n)
Is the query satisfied using only the index? (INDEXONLY=Y) .
Is direct row access possible? (PRIMARY_ACCESSTYPE = D) .
Is a view or nested table expression materialized? . .
Was a scan limited to certain partitions? (PAGE_RANGE= Y)
What kind of prefetching is expected? (PREFETCH =L, S, D, or blank)

Is data accessed or processed in parallel? (PARALLELISM_MODE is I, C, or X)

Are sorts performed?. . .
Is a subquery transformed into a 101n7 .
When are aggregate functions evaluated? (COLUMN FN EVAL)

xii Application Programming and SQL Guide

. 675
. 675
. 676
. 677
. 678
. 678
. 678
. 678
. 679
. 679
. 679
. 682
. 683
. 683
. 684
. 689
. 690
. 696
. 699
. 703
. 703
. 703
. 706
. 709
. 709
. 710
. 712
. 714
. 714
. 716
. 718
. 718
. 719
. 719
. 722

. 722
. 723
. 725
. 727
. 728
. 729

. 731
. 732
. 733
. 740
. 741
. 742
. 743
. 743
. 744
. 744
. 745
. 748
. 748
. 749
. 749
. 749
. 750
. 750

How many index screening columns are used? . . .
Is a complex trigger WHEN clause used? (QBLOCKTYPE TRIGGR) .
Interpreting access to a single table . . .
Table space scans (ACCESSTYPE=R PREFETCH S)
Index access paths. e
UPDATE using an index .
Interpreting access to two or more tables (]om)
Definitions and examples of join operations .
Nested loop join (METHOD=1)
Merge scan join (METHOD=2)
Hybrid join (METHOD=4) .
Star join (JOIN_TYPE='S’) .
Interpreting data prefetch
Sequential prefetch (PREFETCH= S)
Dynamic prefetch (PREFETCH=D)
List prefetch (PREFETCH=L) .
Sequential detection at execution time .
Determining sort activity
Sorts of data.
Sorts of RIDs
The effect of sorts on OPEN CURSOR
Processing for views and nested table expressions .
Merge . .
Materialization . .
Using EXPLAIN to determme when materlahzatlon occurs . .
Using EXPLAIN to determine UNION activity and query rewrite .
Performance of merge versus materialization . .
Estimating a statement’s cost .
Creating a statement table .
Populating and maintaining a statement table
Retrieving rows from a statement table.
The implications of cost categories

Chapter 28. Parallel operations and query performance .

Comparing the methods of parallelism .

Enabling parallel processing

When parallelism is not used .

Interpreting EXPLAIN output . .
A method for examining PLAN_ TABLE columns for parallehsm
PLAN_TABLE examples showing parallelism. o

Tuning parallel processing . .

Disabling query parallelism

Chapter 29. Programming for the Interactive System Productivity Facility

Using ISPF and the DSN command processor .
Invoking a single SQL program through ISPF and DSN .
Invoking multiple SQL programs through ISPF and DSN.
Invoking multiple SQL programs through ISPF and CAF.

Chapter 30. Programming for the call attachment facility.

CAF capabilities and requirements
CAF capabilities
CAF requirements .

How to use CAF .
Summary of connection functlons
Accessing the CAF language interface .
General properties of CAF connections .
CAF function descriptions .
CONNECT: Syntax and usage .
OPEN: Syntax and usage

. 750
. 751
. 751
. 751
. 752
. 757
. 757
. 757
. 760
. 762
. 763
. 765
. 772
. 772
. 773
. 773
. 774
. 776
. 776
. 777
. 777
. 778
. 778
. 779
. 781
. 782
. 783
. 784
. 785
. 787
. 787
. 787

. 789
. 790
. 792
. 793
. 794
. 794
. 794
. 796
. 797

. 799
. 799
. 800
. 801
. 801

. 803
. 803
. 803
. 805
. 806
. 808
. 809
. 810
. 811
. 813
. 817

Contents Xiii

CLOSE: Syntax and usage89

DISCONNECT: Syntax and usage« .« .« .« .« .«80
TRANSLATE: Syntax and usage« .« 822
Summary of CAF behavior. .82
Sample scenarios . . . OO .2
A single task with 1mphc1t connectlons O < 22
A single task with explicit connections .85
Several tasks . . . R < 45}
Exit routines from your apphcatlon O < 22
Attention exit routinesL825
Recovery routines. .82
Error messages and dsntrace .82
CAF return codes and reason codes .8
Program examples for CAF. 827
Sample JCL for using CAF]
Sample assembler code for using CAF - 2
Loading and deleting the CAF language interface .828
Connecting to DB2 for CAF O < V24 <
Checking return codes and reason codes for CAF P - < [0
Using dummy entry point DSNHLI for CAF. .83&
Variable declarations for CAF .83

Chapter 31. Programming for the Resource Recovery Services attachment facility . . 835

RRSAF capabilities and requirements .83
RRSAF capabilities .8F%
RRSAF requirements .83

How to use RRSAF e <
Summary of connection functlons N e 1]
Implicit connections . . R XY
Accessing the RRSAF language 1nterface - 10)
General properties of RRSAF connections .84
Summary of RRSAF behavior .84

RRSAF function descriptions .84
Register conventions . . . 7Y
Parameter conventions for functlon calls e 9
IDENTIFY: Syntax and usage .8406
SWITCH TO: Syntax and usage .89
SIGNON: Syntax and usage .85
AUTH SIGNON: Syntax and usage .84
CONTEXT SIGNON: Syntax and usage. .87
SET_ID: Syntax and usage . . . - ()8
SET_CLIENT_ID: Syntax and usage . < (67
CREATE THREAD: Syntax and usage .8o4
TERMINATE THREAD: Syntax and usage. .807
TERMINATE IDENTIFY: Syntax and usage .868
TRANSLATE: Syntax and usage .86

RRSAF connection examples .o 000008
Example of a single task.87
Example of multiple tasks - 74|
Example of calling SIGNON to reuse a DB2 thread . - 74|
Example of switching DB2 threads between tasks .87

RRSAF return codes and reason codes .872

Program examples for RRSAF. .87
Sample JCL for using RRSAF T < V5
Loading and deleting the RRSAF language 1nterface e Ve
Using dummy entry point DSNHLI for RRSAF .873
Connecting to DB2 for RRSAF. .84

Chapter 32. CICS-specific programming techniques. 877
Controlling the CICS attachment facility from an application877

xiv Application Programming and SQL Guide

HFHFHFEHEHFE—HF T

Improving thread reuse .

. 877

Detecting whether the CICS attachment fac111ty is operat10nal . . 877
Chapter 33. Using WebSphere MQ with DB2 . . 879
Introduction to WebSphere MQ message handhng and the AMI . 879
WebSphere MQ messages e . 879
WebSphere MQ services . . 880
WebSphere MQ policies . . 880
Using WebSphere MQ functions and stored procedures . . 880
Commit environment for WebSphere MQ functions and stored procedures . . 884
How to use WebSphere MQ functions . . 884
Asynchronous messaging in DB2 UDB for z/ OS and OS/ 390 . 891
MQListener in DB2 for OS/390 and z/0OS. . . 892
Configuring and running MQListener in DB2 UDB for OS / 390 and z / OS . . 893
Configuring MQListener tasks. . Lo . 897
Creating a sample stored procedure to use w1th MQLlstener . 898
MQListener examples . 898
Chapter 34. Using DB2 as a web services consumer and provider . 901
DB2 as a web services consumer 901
The SOAPHTTPV and SOAPHTTPC user—deﬁned functlons . 901
SQLSTATESs for DB2 as a web services consumer . 902
DB2 as a web services provider . 903
Chapter 35. Programming techniques: Questions and answers . . 905
Providing a unique key for a table . 905
Scrolling through previously retrieved data . 905
Using a scrollable cursor . 905
Using a ROWID or identity column . 906
Scrolling through a table in any direction . . . 907
Updating data as it is retrieved from the database . . 908
Updating previously retrieved data . . 908
Updating thousands of rows . 908
Retrieving thousands of rows . . 909
Using SELECT * . 909
Optimizing retrieval for a small set of rows . 909
Adding data to the end of a table . . . 910
Translating requests from end users into SQL statements . . 910
Changing the table definition . . 910
Storing data that does not have a tabular format .91
Finding a violated referential or check constraint . 911
Part 7. Appendixes . . 913
Appendix A. DB2 sample tables . 915
Activity table (DSN8810.ACT) . . 915
Department table (DSN8810.DEPT) . . 916
Employee table (DSN8810.EMP) . . 918
Employee photo and resume table (DSN8810 EMP PHOTO RESUME) . 921
Project table (DSN8810.PROJ) . . e e e . 922
Project activity table (DSN8810. PRO]ACT) . 923
Employee to project activity table (DSN8810. EMPPRO]ACT) . 924
Unicode sample table (DSN8810.DEMO_UNICODE) . 925
Relationships among the sample tables . . . 926
Views on the sample tables. . 926
Storage of sample application tables. . 931
Storage group . . 932
Databases . 932
Table spaces . 932
Contents XV

Appendix B. Sample appllcatlons
Types of sample applications .
Using the sample apphcatrons

TSO . -

IMS

CICS .

Appendix C. Running the productlwty-ald sample programs .
Running DSNTIAUL .

Running DSNTIAD

Running DSNTEP2 and DSNTEP4

Appendix D. Programming examples
Sample COBOL dynamic SQL program.
Pointers and based variables
Storage allocation .
Example .
Sample dynamic and statlc SQL in a C program
Sample DB2 REXX application. .
Sample COBOL program using DRDA access. .
Sample COBOL program using DB2 private protocol access .
Examples of using stored procedures S
Calling a stored procedure from a C program
Calling a stored procedure from a COBOL program
Calling a stored procedure from a PL/I program .
C stored procedure: GENERAL . .
C stored procedure: GENERAL WITH NULLS
COBOL stored procedure: GENERAL . .
COBOL stored procedure: GENERAL WITH NULLS
PL/I stored procedure: GENERAL . .
PL/I stored procedure: GENERAL WITH NULLS

Appendix E. Recursive common table expression examples.

Appendix F. REBIND subcommands for lists of plans or packages .

Overview of the procedure for generating lists of REBIND commands .
Sample SELECT statements for generating REBIND commands
Sample JCL for running lists of REBIND commands .

Appendix G. Reserved schema names and reserved words .
Reserved schema names
Reserved words .

Appendix H. Characteristics of SQL statements in DB2 UDB for z/OS.

Actions allowed on SQL statements
SQL statements allowed in external functlons and stored procedures
SQL statements allowed in SQL procedures .

Appendix |. Program preparation options for remote packages

Appendix J. DB2-supplied stored procedures .
WLM environment refresh stored procedure (WLM_REFRESH)
Environment for WLM_REFRESH . Lo
Authorization required for WLM_REFRESH.
WLM_REFRESH syntax diagram
WLM_REFRESH option descriptions .
Example of WLM_REFRESH invocation . .
The CICS transaction invocation stored procedure (DSNACICS) .
Environment for DSNACICS . e

xvi Application Programming and SQL Guide

. 935

. 935
. 937
. 938
. 940
. 940

. MM

. 942
. 945
. 947

. 951

. 951
. 951
. 951
. 952
. 963
. 967
. 981
. 989
. 995
. 995
. 999

. 1002

. 1003
. 1005
. 1008
. 1011
. 1013
. 1014

. 1017

. 1023

. 1023
. 1023
. 1026

. 1029

. 1029
. 1029

. 1033

. 1033
. 1036
. 1038

. 1043

. 1047

. 1049
. 1049
. 1049
. 1050
. 1050
. 1051
. 1051
. 1052

B R RS

FoH o o o3k 3k 3 e o o 3k 3 3 ok o o 3 3k 3 3k o o 3 3k 3 3k o o 3 3 3 3

Authorization required for DSNACICS

DSNACICS syntax diagram . .
DSNACICS option descriptions .
DSNACICX user exit routine .

Example of DSNACICS invocation .
DSNACICS output .

DSNACICS restrictions .

DSNACICS debugging .

IMS transactions stored procedure (DSNAIMS)
Environment for DSNAIMS . Lo
Authorization required for DSNAIMS .
DSNAIMS syntax diagram
DSNAIMS option descriptions
Examples of DSNAIMS invocation .
Connecting to multiple IMS subsystems w1th DSNAIMS

The DB2 EXPLAIN stored procedure . e
Environment . o
Authorization required .

DSNBEXP syntax diagram.
DSNSEXP option descriptions
Example of DSNSEXP invocation
DSNSEXP output. .

Store an XML document from an MQ message queue in DB2 tables (DXXMQINSERT)
Environment for DXXMQINSERT . - e -
Authorization required for DXXMQINSERT .

DXXMQINSERT syntax diagram .
DXXMQINSERT option descriptions
Example of DXXMQINSERT invocation .
DXXMQINSERT output

Store an XML document from an MQ message queue in DB2 tables (DXXMQSHRED)
Environment for DXXMQSHRED . e ..
Authorization required for DXXMQSHRED
DXXMQSHRED syntax diagram.

DXXMQSHRED option descriptions
Example of DXXMQSHRED invocation
DXXMQSHRED output

Store a large XML document from an MQ message queue in DBZ tables (DXXMQINSERTCLOB)
Environment for DXXMQINSERTCLOB . . e o
Authorization required for DXXMQINSERTCLOB.

DXXMQINSERTCLOB syntax diagram .
DXXMQINSERTCLOB option descriptions
Example of DXXMQINSERTCLOB invocation .
DXXMQINSERTCLOB output

Store a large XML document from an MQ message queue in DB2 tables (DXXMQSHREDCLOB)

Environment for DXXMQSHREDCLOB .
Authorization required for DXXMQSHREDCLOB .
DXXMQSHREDCLOB syntax diagram
DXXMQSHREDCLOB option descriptions
Example of DXXMQSHREDCLOB invocation

DXXMQSHREDCLOB output .

Store XML documents from an MQ message queue in DB2 tables (DXXMQINSERTALL)
Environment for DXXMQINSERTALL . . e o
Authorization required for DXXMQINSERTALL
DXXMQINSERTALL syntax diagram . .

DXXMQINSERTALL option descriptions .
Example of DXXMQINSERTALL invocation .
DXXMOQINSERTALL output . .

Store XML documents from an MQ message queue in DB2 tables (DXXMQSHREDALL)
Environment for DXXMQSHREDALL . - . L.
Authorization required for DXXMQSHREDALL
DXXMQSHREDALL syntax diagram . .

Contents

. 1052
. 1052
. 1053
. 1055
. 1057
. 1058
. 1059
. 1059
. 1059
. 1059
. 1059
. 1059
. 1060
. 1062
. 1063
. 1063
. 1063
. 1063
. 1064
. 1064
. 1065
. 1066
. 1066
. 1066
. 1066
. 1066
. 1067
. 1067
. 1068
. 1068
. 1068
. 1069
. 1069
. 1069
. 1070
. 1070
. 1071
. 1071
. 1071
. 1071
. 1071
. 1072
. 1073
. 1073
. 1073
. 1073
. 1073
. 1074
. 1074
. 1075
. 1075
. 1075
. 1076
. 1076
. 1076
. 1077
. 1077
. 1078
. 1078
. 1078
. 1078

xvii

FHHFHFHFH R

DXXMQSHREDALL option descriptions .
Example of DXXMQSHREDALL invocation .
DXXMQSHREDALL output .

Store large XML documents from an MQ message queue in DB2 tables (DXXMQSHREDALLCLOB) .

Environment for DXXMQSHREDALLCLOB.
Authorization required for DXXMQSHREDALLCLOB
DXXMQSHREDALLCLOB syntax diagram . .
DXXMQSHREDALLCLOB option descriptions .
Example of DXXMQSHREDALLCLOB invocation .
DXXMQSHREDALLCLOB output .

Store large XML documents from an MQ message queue in DB2 tables (DXXMQINSERTALLCLOB) .

Environment for DXXMQINSERTALLCLOB. .
Authorization required for DXXMQINSERTALLCLOB
DXXMQINSERTALLCLOB syntax diagram . .
DXXMQINSERTALLCLOB option descriptions .
Example of DXXMQINSERTALLCLOB invocation.
DXXMQINSERTALLCLOB output .

Send XML documents to an MQ message queue (DXXMQGEN)
Environment for DXXMQGEN . . .
Authorization required for DXXMQGEN
DXXMQGEN syntax diagram .

DXXMQGEN option descriptions
Example of DXXMQGEN invocation .
DXXMQGEN output

Send XML documents to an MQ message queue (DXXMQRETRIEVE)
Environment for DXXMQRETRIEVE . o
Authorization required for DXXMQRETRIEVE .

DXXMQRETRIEVE syntax diagram
DXXMQRETRIEVE option descriptions
Example of DXXMQRETRIEVE invocation .
DXXMQRETRIEVE output

Send large XML documents to an MQ message queue (DXXMQGENCLOB)
Environment for DXXMQGENCLOB . .
Authorization required for DXXMQGENCLOB.

DXXMQGENCLOB syntax diagram .
DXXMQGENCLOB option descriptions
Example of DXXMQGENCLOB invocation .
DXXMQGENCLOB output

Send XML documents to an MQ message queue (DXXMQRETRIEVECLOB)
Environment for DXXMQRETRIEVECLOB . Lo
Authorization required for DXXMQRETRIEVECLOB .
DXXMQRETRIEVECLOB syntax diagram
DXXMQRETRIEVECLOB option descriptions
Example of DXXMQRETRIEVECLOB invocation .
DXXMQRETRIEVECLOB output .

Notices Ce
Programming interface information.
Trademarks.

Glossary .

Bibliography

Index .

xviii Application Programming and SQL Guide

. 1078
. 1079
. 1080
. 1080
. 1080
. 1080
. 1081
. 1081
. 1082
. 1082
. 1083
. 1083
. 1083
. 1083
. 1083
. 1084
. 1085
. 1085
. 1085
. 1085
. 1085
. 1086
. 1087
. 1088
. 1088
. 1089
. 1089
. 1089
. 1089
. 1091
. 1092
. 1092
. 1092
. 1092
. 1093
. 1093
. 1094
. 1095
. 1096
. 1096
. 1096
. 1096
. 1096
. 1098
. 1099

. 1101
. 1102
. 1103

. 1105

. 1139

. X-1

H o H H H H*

About this book

This book discusses how to design and write application programs that access DB2
Universal Database for z/OS (DB2), a highly flexible relational database
management system (DBMS).

Visit the following Web site for information about ordering DB2 books and
obtaining other valuable information about DB2 UDB for z/OS:
www.ibm.com/software/data/db2/zos/library.html

— Important
In this version of DB2 UDB for z/OS, the DB2 Utilities Suite is available as an
optional product. You must separately order and purchase a license to such
utilities, and discussion of those utility functions in this publication is not
intended to otherwise imply that you have a license to them. See Part 1 of
IDB2 Utility Guide and Reference for packaging details.

Who should read this book

This book is for DB2 application developers who are familiar with Structured
Query Language (SQL) and who know one or more programming languages that
DB2 supports.

Terminology and citations

In this information, DB2 Universal Database”" for z/OS® is referred to as "DB2
UDB for z/0OS." In cases where the context makes the meaning clear, DB2 UDB for
z/0S is referred to as "DB2®." When this information refers to titles of books in
this library, a short title is used. (For example, "See DB2 SQL Reference" is a citation
to IBM® DB2 Universal Database for z/OS SQL Reference.)

When referring to a DB2 product other than DB2 UDB for z/OS, this information
uses the product’s full name to avoid ambiguity.

The following terms are used as indicated:
DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

OMEGAMON
Refers to any of the following products:
* IBM Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS
* IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/0OS
* IBM DB2 Performance Expert for Multiplatforms and Workgroups
+ IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS or CICS Transaction Server
for 0S/390°.

IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

© Copyright IBM Corp. 1983, 2006 xix

T™

MVS
Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF®
Represents the functions that are provided by the RACF component of the
z/0OS Security Server.

How to read the syntax diagrams

The following rules apply to the syntax diagrams that are used in this book:

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The »»—— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next
line.

The »— symbol indicates that a statement is continued from the previous line.
The —>< symbol indicates the end of a statement.

* Required items appear on the horizontal line (the main path).

v
A

»>—required_item

* Optional items appear below the main path.

v
A

»>—required_item
I—optional_i i.‘em—|

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

|—optional_i tem—l
»>—required_item ><

* If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

v
A

»>—required i tem—[requ ired choicel
requi red_choiceZ—|

If choosing one of the items is optional, the entire stack appears below the main
path.

v
A

»>—required_item
i:zptional_choicel:‘
ptional choice2

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

XX Application Programming and SQL Guide

default_choice
»>—required_item rizz _l

ptional_choice:l
ptional choice

* An arrow returning to the left, above the main line, indicates an item that can be
repeated.

»—required_item— —repeatable_item ><

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

»—required _item——repeatable_item ><

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

* Keywords appear in uppercase (for example, FROM). They must be spelled exactly
as shown. Variables appear in all lowercase letters (for example, column-name).
They represent user-supplied names or values.

* If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products. The major accessibility
features in z/OS products, including DB2 UDB for z/OS, enable users to:

* Use assistive technologies such as screen reader and screen magnifier software
* Operate specific or equivalent features by using only a keyboard
* Customize display attributes such as color, contrast, and font size

Assistive technology products, such as screen readers, function with the DB2 UDB
for z/OS user interfaces. Consult the documentation for the assistive technology
products for specific information when you use assistive technology to access these
interfaces.

Online documentation for Version 8 of DB2 UDB for z/OS is available in the
Information management software for z/OS solutions information center, which is
an accessible format when used with assistive technologies such as screen reader
or screen magnifier software. The Information management software for z/OS
solutions information center is available at the following Web site:

http:/ /publib.boulder.ibm.com/infocenter/dzichelp

How to send your comments

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 UDB for z/OS
documentation. You can use the following methods to provide comments:

About this book XXi

* Send your comments by e-mail to db2pubs@vnet.ibm.com and include the name
of the product, the version number of the product, and the number of the book.
If you are commenting on specific text, please list the location of the text (for
example, a chapter and section title, page number, or a help topic title).

* You can also send comments from the Web. Visit the library Web site at:
www.ibm.com/software/db2zos /library.html

This Web site has a feedback page that you can use to send comments.

e Print and fill out the reader comment form located at the back of this book. You
can give the completed form to your local IBM branch office or IBM
representative, or you can send it to the address printed on the reader comment
form.

xxii Application Programming and SQL Guide

Summary of changes to this book

The principal changes to this book are:

Chapter 1, “Retrieving data,” on page 3 explains how to create and use common
table expressions in SELECT, CREATE VIEW, and INSERT statements, and also
describes how to use common table expressions to create recursive SQL.

Chapter 2, “Working with tables and modifying data,” on page 19| explains how
to select column values as you insert rows into a table by using the SELECT
from INSERT statement.

Chapter 6, “Basics of coding SQL in an application program,” on page 73|
contains information on how to use:

— Host variable arrays, and their indicator arrays, in a multiple-row INSERT
statement (in a C or C++, COBOL, or PL/I program).

— The GET DIAGNOSTICS statement to return diagnostic information about the
last SQL statement that was executed (for example, information about input
data errors during the execution of a multiple-row INSERT statement).

* |Chapter 7, “Using a cursor to retrieve a set of rows,” on page 99| explains how to
use:

- Static and dynamic scrollable cursors.

— A rowset-positioned cursor in a multiple-row FETCH statement (in a C or
C++, COBOL, or PL/I program).

— Positioned updates and deletes with a rowset-positioned cursor.

* |Chapter 9, “Embedding SQL statements in host languages,” on page 135| contains
information on how to declare host variable arrays (for C or C++, COBOL, and
PL/I) for use with multiple-row INSERT and FETCH statements.

« |Chapter 10, “Using constraints to maintain data integrity,” on page 251 describes
informational referential constraints (not enforced by DB2), describes referential
constraints on tables with multi-level security with row-level granularity, and
explains how to maintain referential integrity when using data encryption.

* [Chapter 11, “Using DB2-generated values as keys,” on page 261|is a new chapter
that describes the use of ROWID columns for direct row access, identity columns
as parent keys and foreign keys, and values generated from sequence objects as
keys across multiple tables.

* |Chapter 12, “Using triggers for active data,” on page 269 describes interactions
between triggers and tables that use multi-level security with row-level
granularity.

« [Chapter 21, “Preparing an application program to run,” on page 459 describes
the new SQL processing options:

— CCSID, which specifies the CCSID in which the source program is written.

— NEWFUN, which indicates whether to accept the syntax for DB2 Version 8
new functions.

— For C programs, PADNSTR or NOPADNSTR, which indicates whether or not
output host variables that are NUL-terminated strings are padded with
blanks.

This chapter also describes how the CURRENT PACKAGE PATH special register
is used in identifying the collection for packages at run time.

+ |Chapter 24, “Coding dynamic SQL in application programs,” on page 539
describes how to use a descriptor when you prepare and execute a multiple-row

© Copyright IBM Corp. 1983, 2006 xxiii

INSERT statement. This chapter also includes information about how bind
option REOPT(ONCE) affects dynamic SQL statements.

* |Chapter 25, “Using stored procedures for client/server processing,” on page 573
describes how to invoke DSNTPSMP (the SQL Procedure Processor that prepares
SQL procedures for execution) with the SQL CALL statement. This chapter also
describes new SQL procedure statements and describes how to run multiple
instances of the same stored procedure at the same time.

* |Chapter 31, “Programming for the Resource Recovery Services attachment|
facility,” on page 835|contains information about using implicit connections to
DB2 when applications include SQL statements.

Chapter 33, “Using WebSphere MQ with DB2,” on page 879 is a new chapter
that describes how to use DB2 WebSphere™ MQ functions in SQL statements to
combine DB2 database access with WebSphere MQ message handling.

Appendix E, “Recursive common table expression examples,” on page 1017]is a
new appendix that includes examples of using common table expressions to
create recursive SQL in a bill of materials application.

xxiv Application Programming and SQL Guide

Part 1. Using SQL queries

Chapter 1. Retrieving data .
Result tables .
Data types . .
Selecting columns: SELECT
Selecting all columns: SELECT * . .
Selecting some columns: SELECT column—name
Selecting derived columns: SELECT expression .
Eliminating duplicate rows: DISTINCT
Naming result columns: AS .
Selecting rows using search conditions: WHERE
Putting the rows in order: ORDER BY .
Specifying the sort key
Referencing derived columns
Summarizing group values: GROUP BY
Subjecting groups to conditions: HAVING .
Merging lists of values: UNION .
Using UNION to eliminate duplicates
Using UNION ALL to keep duplicates
Creating common table expressions: WITH .
Using WITH instead of CREATE VIEW . .
Using common table expressions with CREATE VIEW

Using common table expressions when you use INSERT

Using recursive SQL .
Accessing DB2 data that is not in a table
Using 15-digit and 31-digit precision for decimal numbers
Finding information in the DB2 catalog .

Displaying a list of tables you can use

Displaying a list of columns in a table

Chapter 2. Working with tables and modifying data .
Working with tables . .o

Creating your own tables: CREATE TABLE
Identifying defaults. S
Creating work tables .

Creating a new department table .
Creating a new employee table .

Working with temporary tables. .
Working with created temporary tables .
Working with declared temporary tables.

Dropping tables: DROP TABLE. .

Working with views

Defining a view: CREATE VIEW

Changing data through a view .

Dropping views: DROP VIEW .

Modifying DB2 data .

Inserting rows: INSERT
Inserting a single row .

Inserting rows into a table from another table
Other ways to insert data. .

Inserting data into a ROWID column
Inserting data into an identity column

Selecting values as you insert: SELECT from INSERT
Result table of the INSERT operation . .
Selecting values when you insert a single row .
Selecting values when you insert data into a view
Selecting values when you insert multiple rows .

© Copyright IBM Corp. 1983, 2006

O 00 NI NI NI O U1 Uk W

. 19
.19
.19
.19
. 20
. 20
.21
.21
.22
.23
. 25
. 25
. 25
. 26
.27
.27
.27
. 28
.29
. 30
. 30
. 30
.31
.32
. 32
. 33
. 33

Result table of the cursor when you insert multiple rows .
What happens if an error occurs

Updating current values: UPDATE

Deleting rows: DELETE
Deleting every row in a table

Chapter 3. Joining data from more than one table
Inner join .

Full outer join

Left outer join

Right outer join . o .
SQL rules for statements contalnmg join operatlons .
Using more than one join in an SQL statement

Using nested table expressions and user-defined table functrons in]orns .

Using correlated references in table specifications in joins .

Chapter 4. Using subqueries .
Conceptual overview . . .
Correlated and uncorrelated subquerles
Subqueries and predicates
The subquery result table. .
Tables in subqueries of UPDATE, DELETE and INSERT statements
How to code a subquery . .
Basic predicate
Quantified predicate : ALL ANY or SOME
Using the ALL predicate . .
Using the ANY or SOME predlcate
IN keyword .o .o
EXISTS keyword
Using correlated subqueries . .
An example of a correlated subquery
Using correlation names in references .
Using correlated subqueries in an UPDATE statement .
Using correlated subqueries in a DELETE statement .
Using tables with no referential constraints .
Using a single table. .
Using tables with referential constrarnts

Chapter 5. Using SPUFI to execute SQL from your workstation.
Allocating an input data set and using SPUFI . Lo
Changing SPUFI defaults . e
Changing SPUFI defaults - panel 2
Entering SQL statements . .

Using the ISPF editor .

Retrieving Unicode UTF-16 graphrc data

Entering comments R

Setting the SQL terminator character .

Controlling toleration of warnings
Processing SQL statements .
When SQL statements exceed resource hm1t thresholds.
Browsing the output .

Format of SELECT statement results .

Content of the messages .

2 Application Programming and SQL Guide

. 34
. 35
. 36
.37
. 38

. 39
. 40
.41
.42
.43
. 44
. 45
. 46
. 47

. 49
. 49
. 50
. 50
. 50
. 51
. 51
. 51
. 51
.52
. 52
. 52
. 53
. 53
. 53
. 54
. 55
. 56
. 56
. 56
. 56

. 59
. 59
. 60
. 61
. 62
. 62
. 63
. 63
. 63
. 64
. 64
. 65
. 66
. 67
. 68

Chapter 1. Retrieving data

You can retrieve data using the SQL statement SELECT to specify a result table.
This chapter describes how to interactively use SELECT statements to retrieve data
from DB2 tables. It includes the following sections:

* [“Result tables’;|

« [“Data types” on page 4|

« [“Selecting columns: SELECT” on page 5|

* [“Selecting rows using search conditions: WHERE” on page

e |“Putting the rows in order: ORDER BY” on page §|

* |“Summarizing group values: GROUP BY” on page 11|

e |“Merging lists of values: UNION” on page 12|

e |“Creating common table expressions: WITH” on page 13|

 |“Accessing DB2 data that is not in a table” on page 16|

+ [“Using 15-digit and 31-digit precision for decimal numbers” on page 16

+ |“Finding information in the DB2 catalog” on page 17]

For more advanced topics on using SELECT statements, see [Chapter 4, “Using|
subqueries,” on page 49 and |[Chapter 20, “Planning to access distributed data,” on|

page 429.|

Examples of SQL statements illustrate the concepts that this chapter discusses.
Consider developing SQL statements similar to these examples and then running
them dynamically using SPUFI or DB2 Query Management Facility (DB2 QME).

Result tables

The data retrieved through SQL is always in the form of a table, which is called a
result table. Like the tables from which you retrieve the data, a result table has rows
and columns. A program fetches this data one row at a time.

Example: SELECT statement: The following SELECT statement retrieves the last
name, first name, and phone number of employees in department D11 from the
sample employee table:
SELECT LASTNAME, FIRSTNME, PHONENO

FROM DSN8810.EMP

WHERE WORKDEPT = 'D11'
ORDER BY LASTNAME;

The result table looks similar to the following output:

LASTNAME FIRSTNME PHONENO
ADAMSON BRUCE 4510
BROWN DAVID 4501
JOHN REBA 0672
JONES WILLIAM 0942
LUTZ JENNIFER 0672
PTANKA ELIZABETH 3782
SCOUTTEN MARILYN 1682
STERN IRVING 6432
WALKER JAMES 2986
YAMAMOTO KIYOSHI 2890
YOSHIMURA MASATOSHI 2890

© Copyright IBM Corp. 1983, 2006 3

Data types

When you create a DB2 table, you define each column to have a specific data type.
The data type can be a built-in data type or a distinct type. This section discusses
built-in data types. For information about distinct types, see [Chapter 16, “Creating|
land using distinct types,” on page 357 The data type of a column determines what
you can and cannot do with the column. When you perform operations on
columns, the data must be compatible with the data type of the referenced column.
For example, you cannot insert character data, like a last name, into a column
whose data type is numeric. Similarly, you cannot compare columns containing
incompatible data types.

To better understand the concepts that are presented in this chapter, you must
understand the data types of the columns to which an example refers. As shown in
built-in data types have four general categories: datetime, string, numeric,
and row identifier (ROWID).

built-in
data
types
; ; signed row
datetime string numeric identifier
| ROWID
time | [timestamp date exact approximate
TIME TIMESTAMP DATE |
- floating
o | Tength point
character| | graphic binary
BLOB —|
single double
fixed varying fixed varying precision| |precision
length length length length REAL DOUBLE

CHAR l_l_l GRAPHIC I_I_I

VARCHAR CLOB VARGRAPHIC DBCLOB

]

binary ;
integer decimal
16 bit 32 bit packed

SMALLINT INTEGER DECIMAL

Figure 1. DB2 data types

For more detailed information about each data type, see Chapter 2 of

[Table 1 on page 5| shows whether operands of any two data types are compatible,
Y (Yes), or incompatible, N (No). Numbers in the table, either as superscript of Y
or N, or as a value in the column, indicates a note at the bottom of the table.

4 Application Programming and SQL Guide

Table 1. Compatibility of data types for assignments and comparisons. Y indicates that the data types are compatible.
N indicates no compatibility. For any number in a column, read the corresponding note at the bottom of the table.

Binary Decimal Floating Character Graphic Binary Time- Row Distinct
Operands integer number point string string string Date Time stamp ID type
Binary Integer Y Y Y N N N N N N N 2
Decimal Y Y Y N N N N N N N 2
Number
Floating Point Y Y Y N N N N N N N 2
Character N N N Y Y*° N® 1 1 1 N 2
String
Graphic String N N N Y4 Y N 1,4 1,4 1,4 N 2
Binary String N N N N3 N Y N N N N 2
Date N N N 1 14 N Y N N N 2
Time N N N 1 1,4 N N Y N N 2
Timestamp N N N 1 14 N N N Y N 2
Row ID N N N N N N N N N Y 2
Distinct Type 2 2 2 2 2 2 2 2 2 2 Y?

Notes:

1.

The compatibility of datetime values is limited to assignment and comparison:

* Datetime values can be assigned to string columns and to string variables, as explained in Chapter 2 of

* A valid string representation of a date can be assigned to a date column or compared to a date.

* A valid string representation of a time can be assigned to a time column or compared to a time.

* A valid string representation of a timestamp can be assigned to a timestamp column or compared to a
timestamp.

A value with a distinct type is comparable only to a value that is defined with the same distinct type. In general,
DB2 supports assighments between a distinct type value and its source data type. For additional information, see
Chapter 2 of [DB2 SQL Reference]

All character strings, even those with subtype FOR BIT DATA, are not compatible with binary strings.

On assignment and comparison from Graphic to Character, the resulting length in bytes is 3 * (LENGTH(graphic
string)), depending on the CCSIDs.

Character strings with subtype FOR BIT DATA are not compatible with Graphic Data.

Selecting columns: SELECT

You have several options for selecting columns from a database for your result
tables. This section describes how to select columns using a variety of techniques.

Selecting all columns: SELECT *

You do not need to know the column names to select DB2 data. Use an asterisk (*)
in the SELECT clause to indicate that you want to retrieve all columns of each
selected row of the named table.

Example: SELECT *: The following SQL statement selects all columns from the
department table:
SELECT »

FROM DSN8810.DEPT;

The result table looks similar to the following output:

Chapter 1. Retrieving data 5

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

A0O SPIFFY COMPUTER SERVICES DIV. 000010 AOO mmmeee--

BO1 PLANNING 000020 [R
co1 INFORMATION CENTER 000030 Y. —
DO1 DEVELOPMENT CENTER memme- AOO mmmmmeen
D11 MANUFACTURING CENTER 000060 01—
D21 ADMINSTRATION SYSTEMS 000070 010 S —
E01 SUPPORT SERVICES 000050 Y ——
E11 OPERATIONS 000090 200 S —
E21 SOFTWARE SUPPORT 000100 20—
F22 BRANCH OFFICE F2 —emme- 353
622 BRANCH OFFICE G2 —emee- 353 D —
H22 BRANCH OFFICE H2 ~ —emee- EO1 mmmemme-
122 BRANCH OFFICE 12 memee- EO1 cmmme-
J22 BRANCH OFFICE J2 meeee- 25 D —

Because the example does not specify a WHERE clause, the statement retrieves
data from all rows.

The dashes for MGRNO and LOCATION in the result table indicate null values.

SELECT * is recommended mostly for use with dynamic SQL and view definitions.
You can use SELECT * in static SQL, but this is not recommended; if you add a
column to the table to which SELECT * refers, the program might reference
columns for which you have not defined receiving host variables. For more
information about host variables, see [“Accessing data using host variables, variable]
larrays, and structures” on page 75

If you list the column names in a static SELECT statement instead of using an
asterisk, you can avoid the problem created by using SELECT *. You can also see
the relationship between the receiving host variables and the columns in the result
table.

Selecting some columns: SELECT column-name

Select the column or columns you want to retrieve by naming each column. All
columns appear in the order you specify, not in their order in the table.

Example: SELECT column-name: The following SQL statement selects only the
MGRNO and DEPTNO columns from the department table:

SELECT MGRNO, DEPTNO
FROM DSN8810.DEPT;

The result table looks similar to the following output:
MGRNO DEPTNO

000010 A0O
000020 BO1
000030 co1
------ D01
000050 EO1
000060 D11
000070 D21
000090 E11
000100 E21
------ F22
------ G22
—————— H22
------ 122
—————— J22

6 Application Programming and SQL Guide

With a single SELECT statement, you can select data from one column or as many
as 750 columns.

Selecting derived columns: SELECT expression

You can select columns derived from a constant, an expression, or a function.

Example: SELECT with an expression: This SQL statement generates a result table
in which the second column is a derived column that is generated by adding the
values of the SALARY, BONUS, and COMM columns.

SELECT EMPNO, (SALARY + BONUS + COMM)
FROM DSN8810.EMP;

Derived columns in a result table, such as (SALARY + BONUS + COMM), do not
have names. You can use the AS clause to give a name to an unnamed column of
the result table. For information about using the AS clause, see[Naming result]

To order the rows in a result table by the values in a derived column, specify a
name for the column by using the AS clause, and specify that name in the ORDER
BY clause. For information about using the ORDER BY clause, see
frows in order: ORDER BY” on page 9.|

Eliminating duplicate rows: DISTINCT

The DISTINCT keyword removes duplicate rows from your result table, so that
each row contains unique data.

Example: SELECT DISTINCT: The following SELECT statement lists unique
department numbers for administrating departments:

SELECT DISTINCT ADMRDEPT
FROM DSN8810.DEPT;

The result table looks similar to the following output:
ADMRDEPT

Naming result columns: AS

With the AS clause, you can name result columns in a SELECT statement. This is
particularly useful for a column that is derived from an expression or a function.

For syntax and more information about the AS clause, see Chapter 4 of |[DB2 SQL
ﬁ

The following examples show different ways to use the AS clause.

Example: SELECT with AS CLAUSE: The following example of the SELECT
statement gives the expression SALARY+BONUS+COMM the name TOTAL_SAL.

SELECT SALARY+BONUS+COMM AS TOTAL_SAL
FROM DSN8810.EMP
ORDER BY TOTAL_SAL;

Example: CREATE VIEW with AS clause: You can specify result column names in
the select-clause of a CREATE VIEW statement. You do not need to supply the

Chapter 1. Retrieving data 7

column list of CREATE VIEW, because the AS keyword names the derived column.
The columns in the view EMP_SAL are EMPNO and TOTAL_SAL.
CREATE VIEW EMP_SAL AS

SELECT EMPNO, SALARY+BONUS+COMM AS TOTAL_SAL
FROM DSN8810.EMP;

For more information about using the CREATE VIEW statement, see
view: CREATE VIEW” on page 25

Example: UNION ALL with AS clause: You can use the AS clause to give the same
name to corresponding columns of tables in a union. The third result column from
the union of the two tables has the name TOTAL_VALUE, even though it contains
data derived from columns with different names:
SELECT 'On hand' AS STATUS, PARTNO, QOH = COST AS TOTAL_VALUE

FROM PART_ON_HAND
UNION ALL
SELECT 'Ordered' AS STATUS, PARTNO, QORDER * COST AS TOTAL_VALUE

FROM ORDER_PART
ORDER BY PARTNO, TOTAL_VALUE;

The column STATUS and the derived column TOTAL_VALUE have the same name
in the first and second result tables, and are combined in the union of the two
result tables, which is similar to the following partial output:

STATUS PARTNO TOTAL_VALUE

On hand 00557 345.60
Ordered 00557 150.50

For information about unions, see [“Merging lists of values: UNION” on page 12}

Example: GROUP BY derived column: You can use the AS clause in a FROM clause
to assign a name to a derived column that you want to refer to in a GROUP BY
clause. This SQL statement names HIREYEAR in the nested table expression,
which lets you use the name of that result column in the GROUP BY clause:
SELECT HIREYEAR, AVG(SALARY)

FROM (SELECT YEAR(HIREDATE) AS HIREYEAR, SALARY

FROM DSN8810.EMP) AS NEWEMP
GROUP BY HIREYEAR;

You cannot use GROUP BY with a name that is defined with an AS clause for the
derived column YEAR(HIREDATE) in the outer SELECT, because that name does
not exist when the GROUP BY runs. However, you can use GROUP BY with a
name that is defined with an AS clause in the nested table expression, because the
nested table expression runs before the GROUP BY that references the name. For
more information about using the GROUP BY clause, see|“Summarizing group|
(values: GROUP BY” on page 11/

Selecting rows using search conditions: WHERE

Use a WHERE clause to select the rows that meet certain conditions. A WHERE
clause specifies a search condition. A search condition consists of one or more
predicates. A predicate specifies a test you want DB2 to apply to each table row.

DB2 evaluates a predicate for each row as true, false, or unknown. Results are
unknown only if an operand is null.

8 Application Programming and SQL Guide

If a search condition contains a column of a distinct type, the value to which that
column is compared must be of the same distinct type, or you must cast the value

to the distinct type. See|[Chapter 16, “Creating and using distinct types,” on page]

for more information about distinct types.

lists the type of comparison, the comparison operators, and an example of
how each type of comparison that you can use in a predicate in a WHERE clause.

Table 2. Comparison operators used in conditions

Type of comparison Comparison operator Example

Equal to = DEPTNO = "X01’

Not equal to <> DEPTNO <> ’X01"
Less than < AVG(SALARY) < 30000
Less than or equal to <= AGE <= 25

Not less than >= AGE >= 21

Greater than > SALARY > 2000

Greater than or equal to >=

SALARY >= 5000

Not greater than <=

SALARY <= 5000

Equal to null IS NULL

PHONENO IS NULL

Not equal to or one IS DISTINCT FROM
value is equal to null

PHONENO IS DISTINCT FROM
:PHONEHV

Similar to another value LIKE

NAME LIKE "%SMITH%" or STATUS
LIKE 'N_’

At least one of two OR
conditions

HIREDATE < "1965-01-01" OR SALARY
< 16000

Both of two conditions AND

HIREDATE < "1965-01-01" AND
SALARY < 16000

Between two values BETWEEN

SALARY BETWEEN 20000 AND 40000

Equals a value in a set IN (X, Y, Z)

DEPTNO IN ('B01’, "C01’, 'D01")

Note: SALARY BETWEEN 20000 AND 40000 is equivalent to SALARY >= 20000 AND
SALARY <= 40000. For more information about predicates, see Chapter 2 of

You can also search for rows that do not satisfy one of the preceding conditions by
using the NOT keyword before the specified condition.

You can search for rows that do not satisfy the IS DISTINCT FROM predicate by

using either of the following predicates:
* value IS NOT DISTINCT FROM value
* NOT(value IS DISTINCT FROM wvalue)

Both of these forms of the predicate create an expression where one value is equal
to another value or both values are equal to null.

Putting the rows in order: ORDER BY

To retrieve rows in a specific order, use the ORDER BY clause. Using ORDER BY is
the only way to guarantee that your rows are ordered as you want them. The
following sections show you how to use the ORDER BY clause.

Chapter 1. Retrieving data 9

Specifying the sort key
The order of the selected rows depends on the sort keys that you identify in the
ORDER BY clause. A sort key can be a column name, an integer that represents the
number of a column in the result table, or an expression. DB2 orders the rows by
the first sort key, followed by the second sort key, and so on.

You can list the rows in ascending or descending order. Null values appear last in
an ascending sort and first in a descending sort.

DB2 sorts strings in the collating sequence associated with the encoding scheme of
the table. DB2 sorts numbers algebraically and sorts datetime values
chronologically.

Example: ORDER BY clause with a column name as the sort key: Retrieve the
employee numbers, last names, and hire dates of employees in department AQ0 in
ascending order of hire dates:
SELECT EMPNO, LASTNAME, HIREDATE

FROM DSN8810.EMP

WHERE WORKDEPT = 'AQO'
ORDER BY HIREDATE ASC;

The result table looks similar to the following output:

EMPNO LASTNAME HIREDATE

000110 LUCCHESI 1958-05-16
000120 O'CONNELL 1963-12-05
000010 HAAS 1965-01-01
200010 HEMMINGER 1965-01-01
200120 ORLANDO 1972-05-05

Example: ORDER BY clause with an expression as the sort key: The following
subselect retrieves the employee numbers, salaries, commissions, and total
compensation (salary plus commission) for employees with a total compensation
greater than 40000. Order the results by total compensation:
SELECT EMPNO, SALARY, COMM, SALARY+COMM AS "TOTAL COMP"

FROM DSN8810.EMP

WHERE SALARY+COMM > 40000
ORDER BY SALARY+COMM;

The intermediate result table looks similar to the following output:
EMPNO SALARY COMM TOTAL COMP

000030 38250.00 3060.00 41310.00
000050 40175.00 3214.00 43389.00
000020 41250.00 3300.00 44550.00
000110 46500.00 3720.00 50220.00
200010 46500.00 4220.00 50720.00
000010 52750.00 4220.00 56970.00

Referencing derived columns

If you use the AS clause to name an unnamed column in a SELECT statement, you
can use that name in the ORDER BY clause.

Example: ORDER BY clause using a derived column name: The following SQL
statement orders the selected information by total salary:
SELECT EMPNO, (SALARY + BONUS + COMM) AS TOTAL_SAL

FROM DSN8810.EMP
ORDER BY TOTAL_SAL;

10 Application Programming and SQL Guide

H O HFHH H H H*

Summarizing group values: GROUP BY

Use GROUP BY to group rows by the values of one or more columns or by the
results of an expression. You can then apply aggregate functions to each group.

Except for the columns that are named in the GROUP BY clause, the SELECT
statement must specify any other selected columns as an operand of one of the
aggregate functions.

Example: GROUP BY clause using one column: The following SQL statement lists,
for each department, the lowest and highest education level within that
department:

SELECT WORKDEPT, MIN(EDLEVEL), MAX(EDLEVEL)

FROM DSN8810.EMP
GROUP BY WORKDEPT;

If a column that you specify in the GROUP BY clause contains null values, DB2
considers those null values to be equal. Thus, all nulls form a single group.

When it is used, the GROUP BY clause follows the FROM clause and any WHERE
clause, and precedes the ORDER BY clause.

You can group the rows by the values of more than one column.

Example: GROUP BY clause using more than one column: The following statement
finds the average salary for men and women in departments A00 and C01:
SELECT WORKDEPT, SEX, AVG(SALARY) AS AVG_SALARY

FROM DSN8810.EMP

WHERE WORKDEPT IN ('A60', 'CO1')
GROUP BY WORKDEPT, SEX;

The result table looks similar to the following output:
WORKDEPT SEX AVG_SALARY

F 49625.00000000
A0O M 35000.00000000
F 29722 .50000000

DB2 groups the rows first by department number and then (within each
department) by sex before it derives the average SALARY value for each group.

You can also group the rows by the results of an expression

Example: GROUP BY clause using a expression: The following statement groups
departments by their leading characters, and lists the lowest and highest education
level for each group:

SELECT SUBSTR(WORKDEPT,1,1), MIN(EDLEVEL), MAX(EDLEVEL)

FROM DSN8810.EMP
GROUP BY SUBSTR(WORKDEPT,1,1);

Subjecting groups to conditions: HAVING

Use HAVING to specify a search condition that each retrieved group must satisfy.
The HAVING clause acts like a WHERE clause for groups, and contains the same
kind of search conditions you specify in a WHERE clause. The search condition in
the HAVING clause tests properties of each group rather than properties of
individual rows in the group.

Chapter 1. Retrieving data 11

Example: HAVING clause: The following SQL statement includes a HAVING clause
that specifies a search condition for groups of work departments in the employee
table:

SELECT WORKDEPT, AVG(SALARY) AS AVG_SALARY
FROM DSN8810.EMP
GROUP BY WORKDEPT
HAVING COUNT(*) > 1
ORDER BY WORKDEPT;

The result table looks similar to the following output:
WORKDEPT AVG_SALARY

A0O 40850.00000000
co1 29722.50000000
D11 25147.27272727
D21 25668.57142857
E11 21020.00000000
E21 24086.66666666

Compare the preceding example with the second example shown in
leroup values: GROUP BY” on page 11| The clause, HAVING COUNT (*) > 1, ensures

that only departments with more than one member are displayed. In this case,
departments B01 and E01 do not display because the HAVING clause tests a
property of the group.

Example: HAVING clause used with a GROUP BY clause: Use the HAVING clause
to retrieve the average salary and minimum education level of women in each
department for which all female employees have an education level greater than or
equal to 16. Assuming you only want results from departments A00 and D11, the
following SQL statement tests the group property, MIN(EDLEVEL):
SELECT WORKDEPT, AVG(SALARY) AS AVG_SALARY,

MIN(EDLEVEL) AS MIN_EDLEVEL

FROM DSN8810.EMP

WHERE SEX = 'F' AND WORKDEPT IN ('A@O', 'DI11')

GROUP BY WORKDEPT

HAVING MIN(EDLEVEL) >= 16;

The result table looks similar to the following output:

WORKDEPT ~ AVG_SALARY MIN_EDLEVEL
A0O 49625.00000000 18
D11 25817.50000000 17

When you specify both GROUP BY and HAVING, the HAVING clause must follow
the GROUP BY clause. A function in a HAVING clause can include DISTINCT if
you have not used DISTINCT anywhere else in the same SELECT statement. You
can also connect multiple predicates in a HAVING clause with AND and OR, and
you can use NOT for any predicate of a search condition.

Merging lists of values: UNION

Using the UNION keyword, you can combine two or more SELECT statements to
form a single result table. When DB2 encounters the UNION keyword, it processes
each SELECT statement to form an interim result table, and then combines the
interim result table of each statement. If you use UNION to combine two columns
with the same name, the result table inherits that name.

12 Application Programming and SQL Guide

When you use the UNION statement, the SQLNAME field of the SQLDA contains
the column names of the first operand.

Using UNION to eliminate duplicates

You can use UNION to eliminate duplicates when merging lists of values obtained
from several tables.

Example: UNION clause: You can obtain a combined list of employee numbers that
includes both of the following:

* People in department D11

* People whose assignments include projects MA2112, MA2113, and AD3111.

The following SQL statement gives a combined result table containing employee
numbers in ascending order with no duplicates listed:

SELECT EMPNO

FROM DSN8810.EMP

WHERE WORKDEPT = 'D11'
UNION
SELECT EMPNO

FROM DSN8810.EMPPROJACT

WHERE PROJNO = 'MA2112' OR
PROJNO = 'MA2113' OR
PROJNO = 'AD3111'

ORDER BY EMPNO;

If you have an ORDER BY clause, it must appear after the last SELECT statement
that is part of the union. In this example, the first column of the final result table
determines the final order of the rows.

Using UNION ALL to keep duplicates

If you want to keep duplicates in the final result table of a UNION, specify the
optional keyword ALL after the UNION keyword.

Example: UNION ALL clause: The following SQL statement gives a combined
result table containing employee numbers in ascending order, and includes
duplicate numbers:

SELECT EMPNO

FROM DSN8810.EMP

WHERE WORKDEPT = 'DI11'
UNION ALL
SELECT EMPNO

FROM DSN8810.EMPPROJACT

WHERE PROJNO = 'MA2112' OR
PROJNO = 'MA2113' OR
PROJNO = 'AD3111'

ORDER BY EMPNO;

| Creating common table expressions: WITH

I A common table expression is like a temporary view that is defined and used for the
| duration of an SQL statement. You can define a common table expression for the
| SELECT, INSERT, and CREATE VIEW statements.

Each common table expression must have a unique name and be defined only
once. However, you can reference a common table expression many times in the
same SQL statement. Unlike regular views or nested table expressions, which
derive their result tables for each reference, all references to common table
expressions in a given statement share the same result table.

Chapter 1. Retrieving data 13

A common table expression can be used in the following situations:

* When you want to avoid creating a view (when general use of the view is not
required and positioned updates or deletes are not used)

* When the desired result table is based on host variables
* When the same result table needs to be shared in a fullselect
* When the results need to be derived using recursion

Using WITH instead of CREATE VIEW

Using the WITH clause to create a common table expression saves you the
overhead of needing to create and drop a regular view that you only need to use
once. Also, during statement preparation, DB2 does not need to access the catalog
for the view, which saves you additional overhead.

You can use a common table expression in a SELECT statement by using the WITH
clause at the beginning of the statement.

Example: WITH clause in a SELECT statement: The following statement finds the
department with the highest total pay. The query involves two levels of
aggregation. First, you need to determine the total pay for each department by
using the SUM function and order the results by using the GROUP BY clause. You
then need to find the department with maximum total pay based on the total pay
for each department.
WITH DTOTAL (deptno, totalpay) AS
(SELECT deptno, sum(salary+bonus)
FROM DSN8810.EMP
GROUP BY deptno)
SELECT deptno
FROM DTOTAL

WHERE totalpay = (SELECT max(totalpay)
FROM DTOTAL);

The result table for the common table expression, DTOTAL, contains the
department number and total pay for each department in the employee table. The
fullselect in the previous example uses the result table for DTOTAL to find the
department with the highest total pay. The result table for the entire statement
looks similar to the following results:

DEPTNO

Using common table expressions with CREATE VIEW

You can use common table expressions before a fullselect in a CREATE VIEW
statement. The common table expression must be placed immediately inside of the
statement. This is useful if you need to use the results of a common table
expression in more than one query.

Example: Using a WITH clause in a CREATE VIEW statement: The following
statement finds the departments that have a greater than average total pay and
saves the results as the view RICH_DEPT:

CREATE VIEW RICH_DEPT (deptno) AS
WITH DTOTAL (deptno, totalpay) AS
(SELECT deptno, sum(salary+bonus)
FROM DSN8810.EMP
GROUP BY deptno)
SELECT deptno

14 Application Programming and SQL Guide

FROM DTOTAL
WHERE totalpay > (SELECT AVG(totalpay)
FROM DTOTAL)

The fullselect in the previous example uses the result table for DTOTAL to find the
departments that have a greater than average total pay. The result table is saved as
the RICH_DEPT view and looks similar to the following results:

DEPTNO

Using common table expressions when you use INSERT

You can use common table expressions before a fullselect in an INSERT statement.
The common table expression must be placed immediately inside of the statement.

Example: Using a WITH clause in an INSERT statement: The following example
illustrates the use of a common table expression in an INSERT statement.

INSERT INTO vital _mgr (mgrno) AS
WITH VITALDEPT (deptno, se count) AS
(SELECT deptno, count(*)
FROM DSN8810.EMP
WHERE job = 'senior engineer'
GROUP BY deptno)
SELECT d.manager
FROM DSN8810.DEPT d, VITALDEPT s
WHERE d.deptno = s.deptno
AND s.se_count > (SELECT AVG(se_count)
FROM VITALDEPT);

The fullselect in the previous example uses the result table for VITALDEPT to find
the manager’s number for departments that have a greater than average number of
senior engineers. The manager’s number is then inserted into the vital_mgr table.

Using recursive SQL

You can use common table expressions to create recursive SQL. If a fullselect of a
common table expression contains a reference to itself in a FROM clause, the
common table expression is a recursive common table expression. Queries that use
recursion are useful in applications like bill of materials applications, network
planning applications, and reservation systems.

Recursive common table expressions must follow these rules:

* The first fullselect of the first union (the initialization fullselect) must not include
a reference to the common table expression

* Each fullselect that is part of the recursion cycle must:
— Start with SELECT or SELECT ALL. SELECT DISTINCT is not allowed

— Include only one reference to the common table expression that is part of the
recursion cycle in it's FROM clause

— Not include aggregate functions, a GROUP BY clause, or a HAVING clause

* The column names must be specified following the table name of the common
table expression

e The data types, lengths, and CCSIDs of the column names from the common
table expression that are referenced in the iterative fullselect must match

e The UNION statements must be UNION ALL

Chapter 1. Retrieving data 15

* Outer joins must not be part of any recursion cycle
* Subquery must not be part on any recursion cycle

It is possible to introduce an infinite loop when developing a recursive common
table expression. A recursive common table expression is expected to include a
predicate that will prevent an infinite loop. A warning is issued if one of the
following is not found in the iterative fullselect of a recursive common table
expression:

* An integer column that increments by a constant

* A predicate in the WHERE clause in the form of counter_column < constant or
counter_column < :host variable

See[Appendix E, “Recursive common table expression examples,” on page 1017 for
examples of bill of materials applications that use recursive common table
expressions.

Accessing DB2 data that is not in a table

You can access DB2 data that is not in a table by returning the value of an SQL
expression in a host variable. The expression does not include a column of a table.
The three ways to return a value in a host variable are as follows:

* Set the contents of a host variable to the value of an expression by using the SET
host-variable assignment statement.
EXEC SQL SET :hvrandval = RAND(:hvrand);

¢ Use the VALUES INTO statement to return the value of an expression in a host
variable.

EXEC SQL VALUES RAND(:hvrand)
INTO :hvrandval;
* Select the expression from the DB2-provided EBCDIC table, named
SYSIBM.SYSDUMMY1, which consists of one row.
EXEC SQL SELECT RAND(:hvrand)

INTO :hvrandval
FROM SYSIBM.SYSDUMMY1;

Using 15-digit and 31-digit precision for decimal numbers

DB2 allows two sets of rules for determining the precision and scale of the result
of an operation with decimal numbers.

* DEC15 rules allow a maximum precision of 15 digits in the result of an
operation. DEC15 rules are in effect when both operands have a precision of 15
or less, or unless the DEC31 rules apply.

» DEC31 rules allow a maximum precision of 31 digits in the result. DEC31 rules
are in effect if any of the following conditions is true:

— Either operand of the operation has a precision greater than 15 digits.
— The operation is in a dynamic SQL statement, and any of the following
conditions is true:

- The current value of special register CURRENT PRECISION is DEC31 or
D31.s. s is a number between one and nine and represents the minimum
scale to be used for division operations.

- The installation option for DECIMAL ARITHMETIC on panel DSNTIP4 is
DEC31, D31.s, or 31; the installation option for USE FOR DYNAMICRULES
on panel DSNTIP4 is YES; and the value of CURRENT PRECISION has not
been set by the application.

16 Application Programming and SQL Guide

- The SQL statement has bind, define, or invoke behavior; the statement is in
an application precompiled with option DEC(31); the installation option for
USE FOR DYNAMICRULES on panel DSNTIP4 is NO; and the value of
CURRENT PRECISION has not been set by the application. See ["Using]

DYNAMICRULES to specify behavior of dynamic SQL statements” on page]

@for an explanation of bind, define, and invoke behavior.

— The operation is in an embedded (static) SQL statement that you precompiled
with the DEC(31), DEC31, or D31.s option, or with the default for that option
when the install option DECIMAL ARITHMETIC is DEC31 or 31. s is a
number between one and nine and represents the minimum scale to be used
for division operations. See [“Step 1: Process SQL statements” on page 461| for
information about precompiling and for a list of all precompiler options.

Recommendation: Choose DEC31 or D31.s to reduce the chance of overflow, or
when dealing with a precision greater than 15 digits. s is a number between one
and nine and represents the minimum scale to be used for division operations.

Avoiding decimal arithmetic errors: For static SQL statements, the simplest way to
avoid a division error is to override DEC31 rules by specifying the precompiler
option DEC(15). In some cases you can avoid a division error by specifying D31.s.
This specification reduces the probability of errors for statements that are
embedded in the program. s is a number between one and nine and represents the
minimum scale to be used for division operations.

If the dynamic SQL statements have bind, define, or invoke behavior and the value
of the installation option for USE FOR DYNAMICRULES on panel DSNTIP4 is
NO, you can use the precompiler option DEC(15), DEC15, or D15.s to override
DEC31 rules.

For a dynamic statement, or for a single static statement, use the scalar function
DECIMAL to specify values of the precision and scale for a result that causes no
errors.

Before you execute a dynamic statement, set the value of special register
CURRENT PRECISION to DEC15 or D15.s.

Even if you use DEC31 rules, multiplication operations can sometimes cause
overflow because the precision of the product is greater than 31. To avoid overflow
from multiplication of large numbers, use the MULTIPLY_ALT built-in function
instead of the multiplication operator.

Finding information in the DB2 catalog

The following examples show you how to access the DB2 system catalog tables to
list the following objects:

* The tables that you can access

* The column names of a table

The contents of the DB2 system catalog tables can be a useful reference tool when
you begin to develop an SQL statement or an application program.

Displaying a list of tables you can use

The catalog table, SYSIBM.SYSTABAUTH, lists table privileges granted to
authorization IDs. To display the tables that you have authority to access (by
privileges granted either to your authorization ID or to PUBLIC), you can execute

Chapter 1. Retrieving data 17

an SQL statement similar to the one shown in the following example. To do this,
you must have the SELECT privilege on SYSIBM.SYSTABAUTH.
SELECT DISTINCT TCREATOR, TTNAME

FROM SYSIBM.SYSTABAUTH
WHERE GRANTEE IN (USER, 'PUBLIC', 'PUBLIC*') AND GRANTEETYPE = ' ';

In this query, the predicate GRANTEETYPE = ' ' selects authorization IDs.

If your DB2 subsystem uses an exit routine for access control authorization, you
cannot rely on catalog queries to tell you the tables you can access. When such an
exit routine is installed, both RACF and DB2 control table access.

Displaying a list of columns in a table

Another catalog table, SYSIBM.SYSCOLUMNS, describes every column of every
table. Suppose you run the previous SQL statements to display a list of tables you
can access and you now want to display information about table DSN8810.DEPT.
To execute the following example, you must have the SELECT privilege on
SYSIBM.SYSCOLUMNS.
SELECT NAME, COLTYPE, SCALE, LENGTH

FROM SYSIBM.SYSCOLUMNS

WHERE TBNAME = 'DEPT'
AND TBCREATOR = 'DSN8810';

If you display column information about a table that includes LOB or ROWID
columns, the LENGTH field for those columns contains the number of bytes those
column occupy in the base table, rather than the length of the LOB or ROWID
data. To determine the maximum length of data for a LOB or ROWID column,
include the LENGTH2 column in your query, as in the following example:
SELECT NAME, COLTYPE, LENGTH, LENGTH2

FROM SYSIBM.SYSCOLUMNS

WHERE TBNAME = 'EMP_PHOTO_RESUME'
AND TBCREATOR = 'DSN8810';

18 Application Programming and SQL Guide

Chapter 2. Working with tables and modifying data

This chapter discusses these topics:

¢ |Creating your own tables: CREATE TABLEI

e |“Working with temporary tables” on page 21
* |“Dropping tables: DROP TABLE” on page 25
* [“Defining a view: CREATE VIEW” on page 25|

e [“Changing data through a view” on page 2

* |“Dropping views: DROP VIEW” on page 2

e |“Inserting rows: INSERT” on page 2

» [“Selecting values as you insert: SELECT from INSERT” on page 31|

* |“Updating current values: UPDATE” on page 36
* [“Deleting rows: DELETE” on page 37

See [DB2 SQL Reference for more information about working with tables and data.

Working with tables

This section discusses how to work with tables. As you work with tables, you
might need to create new tables, copy existing tables, add columns, add or drop
referential and check constraints, drop the tables you are working with, or make
any number of changes.

Creating your own tables: CREATE TABLE

Use the CREATE TABLE statement to create a table. The following SQL statement
creates a table named PRODUCT:

CREATE TABLE PRODUCT

(SERIAL CHAR(8) NOT NULL,
DESCRIPTION VARCHAR(60) DEFAULT,
MFGCOST DECIMAL(8,2),

MFGDEPT CHAR(3),

MARKUP SMALLINT,

SALESDEPT CHAR(3),

CURDATE DATE DEFAULT) ;

The preceding CREATE statement has the following elements:
* CREATE TABLE, which names the table PRODUCT.

* A list of the columns that make up the table. For each column, specify the
following information:

— The column’s name (for example, SERIAL).

— The data type and length attribute (for example, CHAR(8)). For more
information about data types, see [‘Data types” on page 4/

— Optionally, a default value. See|“Identifying defaults.”]

— Optionally, a referential constraint or check constraint. See |“Using referential|
fconstraints” on page 253|and |“Using check constraints” on page 251]

You must separate each column description from the next with a comma, and
enclose the entire list of column descriptions in parentheses.

Identifying defaults
If you want to constrain the input or identify the default of a column, you can use
the following values:

© Copyright IBM Corp. 1983, 2006 19

e NOT NULL, when the column cannot contain null values.

* UNIQUE, when the value for each row must be unique, and the column cannot
contain null values.

* DEFAULT, when the column has one of the following DB2-assigned defaults:
— For numeric columns, zero is the default value.
— For fixed-length strings, blank is the default value.

— For variable-length strings, including LOB strings, the empty string (string of
zero-length) is the default value.

— For datetime columns, the current value of the associated special register is
the default value.

e DEFAULT value, when you want to identify one of the following values as the

default value:

— A constant

- NULL

— USER, which specifies the value of the USER special register at the time that
an INSERT statement assigns a default value to the column in the row that is
being inserted

— CURRENT SQLID, which specifies the value of the CURRENT SQLID special
register at the time that an INSERT statement assigns a default value to the
column in the row that is being inserted

— The name of a cast function that casts a default value (of a built-in data type)
to the distinct type of a column

Creating work tables

Before testing SQL statements that insert, update, and delete rows, you should
create work tables (duplicates of the DSN8810.EMP and DSN8810.DEPT tables), so
that the original sample tables remain intact. This section shows how to create two
work tables and how to fill a work table with the contents of another table.

Each example shown in this chapter assumes that you logged on using your own
authorization ID. The authorization ID qualifies the name of each object you create.
For example, if your authorization ID is SMITH, and you create table YDEPT, the
name of the table is SMITH.YDEPT. If you want to access table DSN8810.DEPT,
you must refer to it by its complete name. If you want to access your own table
YDEPT, you need only to refer to it as YDEPT.

Creating a new department table
Use the following statements to create a new department table called YDEPT,
modeled after the existing table, DSN8810.DEPT, and an index for YDEPT:

CREATE TABLE YDEPT
LIKE DSN8810.DEPT;

CREATE UNIQUE INDEX YDEPTX
ON YDEPT (DEPTNO);

If you want DEPTNO to be a primary key, as in the sample table, explicitly define
the key. Use an ALTER TABLE statement, as in the following example:

ALTER TABLE YDEPT
PRIMARY KEY(DEPTNO) ;

You can use an INSERT statement to copy the rows of the result table of a
fullselect from one table to another. The following statement copies all of the rows
from DSN8810.DEPT to your own YDEPT work table.

INSERT INTO YDEPT

SELECT =
FROM DSN8810.DEPT;

20 Application Programming and SQL Guide

For information about using the INSERT statement, see [“Inserting rows: INSERT”)

Creating a new employee table
You can use the following statements to create a new employee table called YEMP.
CREATE TABLE YEMP

(EMPNO CHAR(6) PRIMARY KEY NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT ~ CHAR(3) REFERENCES YDEPT
ON DELETE SET NULL,
PHONENO CHAR(4) UNIQUE NOT NULL,
HIREDATE DATE ,
JOB CHAR(8)
EDLEVEL SMALLINT
SEX CHAR(1)

BIRTHDATE DATE
SALARY DECIMAL(9, 2)
BONUS DECIMAL(9, 2)
COMM DECIMAL(9, 2)

~—ue v v v w ou

B

This statement also creates a referential constraint between the foreign key in
YEMP (WORKDEPT) and the primary key in YDEPT (DEPTNO). It also restricts all
phone numbers to unique numbers.

If you want to change a table definition after you create it, use the statement
ALTER TABLE. If you want to change a table name after you create it, use the
statement RENAME TABLE.

You can change a table definition by using the ALTER TABLE statement only in
certain ways. For example, you can add and drop constraints on columns in a
table. You can also change the data type of a column within character data types,
within numeric data types, and within graphic data types. You can add a column
to a table. However, you cannot drop a column from a table.

For more information about changing a table definition by using ALTER TABLE,
see Part 2 (Volume 1) of [DB2 Administration Guidd. For other details about the
ALTER TABLE and RENAME TABLE statements, see Chapter 5 of |DB2 SQ

Working with temporary tables

When you need a table only for the duration of an application process, you can
create a temporary table. There are two kinds of temporary tables:

* Created temporary tables, which you define using a CREATE GLOBAL
TEMPORARY TABLE statement

* Declared temporary tables, which you define using a DECLARE GLOBAL
TEMPORARY TABLE statement

SQL statements that use temporary tables can run faster because of the following

reasons:

* DB2 does no logging (for created temporary tables) or limited logging (for
declared temporary tables).

* DB2 does no locking (for created temporary tables) or limited locking (for
declared temporary tables).

Chapter 2. Working with tables and modifying data 21

Temporary tables are especially useful when you need to sort or query
intermediate result tables that contain a large number of rows, but you want to
store only a small subset of those rows permanently.

Temporary tables can also return result sets from stored procedures. For more
information, see [“Writing a stored procedure to return result sets to a DRDA|
client” on page 594/ The following sections provide more details on created
temporary tables and declared temporary tables.

Working with created temporary tables

You create the definition of a created temporary table using the SQL statement
CREATE GLOBAL TEMPORARY TABLE.

Example: The following statement creates the definition of a table called

TEMPPROD:

CREATE GLOBAL TEMPORARY TABLE TEMPPROD
(SERIAL CHAR(8) NOT NULL,
DESCRIPTION VARCHAR(60) NOT NULL,
MFGCOST DECIMAL(8,2),
MFGDEPT CHAR(3),
MARKUP SMALLINT,
SALESDEPT CHAR(3),
CURDATE DATE NOT NULL);

Example: You can also create this same definition by copying the definition of a
base table using the LIKE clause:

CREATE GLOBAL TEMPORARY TABLE TEMPPROD LIKE PROD;

The SQL statements in the previous examples create identical definitions, even
though table PROD contains two columns, DESCRIPTION and CURDATE, that are
defined as NOT NULL WITH DEFAULT. Unlike the PROD sample table, the
DESCRIPTION and CURDATE columns in the TEMPPROD table are defined as
NOT NULL and do not have defaults, because created temporary tables do not
support non-null default values.

After you run one of the two CREATE statements, the definition of TEMPPROD
exists, but no instances of the table exist. To drop the definition of TEMPPROD,
you must run the following statement:

DROP TABLE TEMPPROD;

To create an instance of TEMPPROD, you must use TEMPPROD in an application.
DB2 creates an instance of the table when TEMPPROD is specified in one of the
following SQL statements:

* OPEN

* SELECT

» INSERT

* DELETE

An instance of a created temporary table exists at the current server until one of
the following actions occurs:

* The application process ends.

¢ The remote server connection through which the instance was created
terminates.

* The unit of work in which the instance was created completes.

When you run a ROLLBACK statement, DB2 deletes the instance of the created
temporary table. When you run a COMMIT statement, DB2 deletes the instance

22 Application Programming and SQL Guide

of the created temporary table unless a cursor for accessing the created
temporary table is defined WITH HOLD and is open.

Example: Suppose that you create a definition of TEMPPROD and then run an
application that contains the following statements:
EXEC SQL DECLARE C1 CURSOR FOR SELECT * FROM TEMPPROD;

EXEC SQL INSERT INTO TEMPPROD SELECT % FROM PROD;
EXEC SQL OPEN C1;

EXEC SQL COMMIT;

EXEC SQL CLOSE C1;

When you run the INSERT statement, DB2 creates an instance of TEMPPROD and
populates that instance with rows from table PROD. When the COMMIT statement
is run, DB2 deletes all rows from TEMPPROD. However, assume that you change
the declaration of cursor C1 to the following declaration:

EXEC SQL DECLARE C1 CURSOR WITH HOLD
FOR SELECT = FROM TEMPPROD;

In this case, DB2 does not delete the contents of TEMPPROD until the application
ends because C1, a cursor defined WITH HOLD, is open when the COMMIT
statement is run. In either case, DB2 drops the instance of TEMPPROD when the
application ends.

Working with declared temporary tables

You create an instance of a declared temporary table using the SQL statement
DECLARE GLOBAL TEMPORARY TABLE. That instance is known only to the
application process in which the table is declared, so you can declare temporary
tables with the same name in different applications. The qualifier for a declared
temporary table is SESSION.

Before you can define declared temporary tables, you must create a special
database and table spaces for them. You do that by running the CREATE
DATABASE statement with the AS TEMP clause, and then creating segmented
table spaces in that database. A DB2 subsystem can have only one database for
declared temporary tables, but that database can contain more than one table
space. There must be at least one table space with a 8-KB page size in the TEMP
database to declare a temporary table.

Example: The following statements create a database and table space for declared
temporary tables:

CREATE DATABASE DTTDB AS TEMP;
CREATE TABLESPACE DTTTS IN DTTDB
SEGSIZE 4;

You can define a declared temporary table in any of the following ways:
* Specify all the columns in the table.

Unlike columns of created temporary tables, columns of declared temporary
tables can include the WITH DEFAULT clause.

* Use a LIKE clause to copy the definition of a base table, created temporary table,
or view.

If the base table or created temporary table that you copy has identity columns,
you can specify that the corresponding columns in the declared temporary table
are also identity columns. Do that by specifying the INCLUDING IDENTITY
COLUMN ATTRIBUTES clause when you define the declared temporary table.

Chapter 2. Working with tables and modifying data 23

* Use a fullselect to choose specific columns from a base table, created temporary
table, or view.

If the base table, created temporary table, or view from which you select
columns has identity columns, you can specify that the corresponding columns
in the declared temporary table are also identity columns. Do that by specifying
the INCLUDING IDENTITY COLUMN ATTRIBUTES clause when you define
the declared temporary table.

If you want the declared temporary table columns to inherit the defaults for
columns of the table or view that is named in the fullselect, specify the
INCLUDING COLUMN DEFAULTS clause. If you want the declared temporary
table columns to have default values that correspond to their data types, specify
the USING TYPE DEFAULTS clause.

Example: The following statement defines a declared temporary table called
TEMPPROD by explicitly specifying the columns.

DECLARE GLOBAL TEMPORARY TABLE TEMPPROD
(SERIAL CHAR(8) NOT NULL WITH DEFAULT '99999999',
DESCRIPTION VARCHAR(60) NOT NULL,
PRODCOUNT INTEGER GENERATED ALWAYS AS IDENTITY,

MFGCOST DECIMAL(8,2),

MFGDEPT CHAR(3),

MARKUP SMALLINT,

SALESDEPT CHAR(3),

CURDATE DATE NOT NULL);

Example: The following statement defines a declared temporary table called
TEMPPROD by copying the definition of a base table. The base table has an
identity column that the declared temporary table also uses as an identity column.

DECLARE GLOBAL TEMPORARY TABLE TEMPPROD LIKE BASEPROD
INCLUDING IDENTITY COLUMN ATTRIBUTES;

Example: The following statement defines a declared temporary table called
TEMPPROD by selecting columns from a view. The view has an identity column
that the declared temporary table also uses as an identity column. The declared
temporary table inherits its default column values from the default column values
of a base table underlying the view.
DECLARE GLOBAL TEMPORARY TABLE TEMPPROD

AS (SELECT * FROM PRODVIEW)

DEFINITION ONLY

INCLUDING IDENTITY COLUMN ATTRIBUTES
INCLUDING COLUMN DEFAULTS;

After you run a DECLARE GLOBAL TEMPORARY TABLE statement, the
definition of the declared temporary table exists as long as the application process
runs. If you need to delete the definition before the application process completes,
you can do that with the DROP TABLE statement. For example, to drop the
definition of TEMPPROD, run the following statement:

DROP TABLE SESSION.TEMPPROD;

DB2 creates an empty instance of a declared temporary table when it runs the
DECLARE GLOBAL TEMPORARY TABLE statement. You can populate the
declared temporary table using INSERT statements, modify the table using
searched or positioned UPDATE or DELETE statements, and query the table using
SELECT statements. You can also create indexes on the declared temporary table.

The ON COMMIT clause that you specify in the DECLARE GLOBAL
TEMPORARY TABLE statement determines whether DB2 keeps or deletes all the

24 Application Programming and SQL Guide

rows from the table when you run a COMMIT statement in an application with a
declared temporary table. ON COMMIT DELETE ROWS, which is the default,
causes all rows to be deleted from the table at a commit point, unless there is a
held cursor open on the table at the commit point. ON COMMIT PRESERVE
ROWS causes the rows to remain past the commit point.

Example: Suppose that you run the following statement in an application program:

EXEC SQL DECLARE GLOBAL TEMPORARY TABLE TEMPPROD
AS (SELECT * FROM BASEPROD)
DEFINITION ONLY
INCLUDING IDENTITY COLUMN ATTRIBUTES
INCLUDING COLUMN DEFAULTS
ON COMMIT PRESERVE ROWS;
EXEC SQL INSERT INTO SESSION.TEMPPROD SELECT =+ FROM BASEPROD;

EXEC SQL COMMIT;

When DB2 runs the preceding DECLARE GLOBAL TEMPORARY TABLE
statement, DB2 creates an empty instance of TEMPPROD. The INSERT statement
populates that instance with rows from table BASEPROD. The qualifier, SESSION,
must be specified in any statement that references TEMPPROD. When DB2
executes the COMMIT statement, DB2 keeps all rows in TEMPPROD because
TEMPPROD is defined with ON COMMIT PRESERVE ROWS. When the program
ends, DB2 drops TEMPPROD.

Dropping tables: DROP TABLE
The following SQL statement drops the YEMP table:
DROP TABLE YEMP;

Use the DROP TABLE statement with care: Dropping a table is NOT equivalent to
deleting all its rows. When you drop a table, you lose more than its data and its
definition. You lose all synonyms, views, indexes, and referential and check
constraints associated with that table. You also lose all authorities granted on the
table.

For more information about the DROP statement, see Chapter 5 of |[DB2 SQL

Working with views

This section discusses how to use CREATE VIEW and DROP VIEW to control your
views of existing tables. Although you cannot modify an existing view, you can
drop it and create a new one if your base tables change in a way that affects the
view. Dropping and creating views does not affect the base tables or their data.

Defining a view: CREATE VIEW

A view does not contain data; it is a stored definition of a set of rows and columns.
A view can present any or all of the data in one or more tables and, in most cases,
is interchangeable with a table. Using views can simplify writing SQL statements.

Use the CREATE VIEW statement to define a view and give the view a name, just

as you do for a table. The view created with the following statement shows each
department manager’s name with the department data in the DSN8810.DEPT table.

Chapter 2. Working with tables and modifying data 25

CREATE VIEW VDEPTM AS
SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT
FROM DSN8810.DEPT, DSN8810.EMP
WHERE DSN8810.EMP.EMPNO = DSN8810.DEPT.MGRNO;

When a program accesses the data defined by a view, DB2 uses the view definition
to return a set of rows the program can access with SQL statements. To see the
departments administered by department D01 and the managers of those
departments, run the following statement, which returns information from the
VDEPTIM view:

SELECT DEPTNO, LASTNAME

FROM VDEPTM
WHERE ADMRDEPT = 'DO1';

When you create a view, you can reference the USER and CURRENT SQLID
special registers in the CREATE VIEW statement. When referencing the view, DB2
uses the value of the USER or CURRENT SQLID that belongs to the user of the
SQL statement (SELECT, UPDATE, INSERT, or DELETE) rather than the creator of
the view. In other words, a reference to a special register in a view definition refers
to its run-time value.

A column in a view might be based on a column in a base table that is an identity

column. The column in the view is also an identity column, except under any of the

following circumstances:

e The column appears more than once in the view.

e The view is based on a join of two or more tables.

* The view is based on the union of two or more tables.

* Any column in the view is derived from an expression that refers to an identity
column.

You can use views to limit access to certain kinds of data, such as salary
information. You can also use views for the following actions:

* Make a subset of a table’s data available to an application. For example, a view
based on the employee table might contain rows only for a particular
department.

* Combine columns from two or more tables and make the combined data
available to an application. By using a SELECT statement that matches values in
one table with those in another table, you can create a view that presents data
from both tables. However, you can only select data from this type of view. You
cannot update, delete, or insert data using a view that joins two or more
tables.

* Combine rows from two or more tables and make the combined data available
to an application. By using two or more subselects that are connected by
UNION or UNION ALL operators, you can create a view that presents data
from several tables. However, you can only select data from this type of view.
You cannot update, delete, or insert data using a view that contains UNION
operations.

* Present computed data, and make the resulting data available to an application.
You can compute such data using any function or operation that you can use in
a SELECT statement.

Changing data through a view

Some views are read-only; other views are subject to update or insert restrictions.
(See Chapter 5 of [DB2 SQL Reference for more information about read-only views.)
If a view does not have update restrictions, some additional considerations include:

26 Application Programming and SQL Guide

* You must have the appropriate authorization to insert, update, or delete rows

using the view.

* When you use a view to insert a row into a table, the view definition must
specify all the columns in the base table that do not have a default value. The
row being inserted must contain a value for each of those columns.

* Views that you can use to update data are subject to the same referential
constraints and check constraints as the tables you used to define the views.

* You can use the WITH CHECK option of the CREATE VIEW statement to
specify the constraint that every row that is inserted or updated through the
view must conform to the definition of the view. You can select every row that is
inserted or updated through a view that specifies WITH CHECK.

Dropping views: DROP VIEW

When you drop a view, you also drop all views that are defined on the following
view. This SQL statement drops the VDEPTM view:

DROP VIEW VDEPTM;

Modifying DB2 data

This section discusses how to add or modify data in an existing table using the
statements INSERT, UPDATE, and DELETE:

* [“Inserting rows: INSERT”]

* |“Selecting values as you insert: SELECT from INSERT” on page 31|

+ |“Updating current values: UPDATE” on page 36|

s [“Deleting rows: DELETE” on page 37

Inserting rows: INSERT

Use an INSERT statement to add new rows to a table or view. Using an INSERT
statement, you can do the following actions:

* Specify the column values to insert a single row. You can specify constants, host
variables, expressions, DEFAULT, or NULL by using the VALUES clause.

[“Inserting a single row” on page 28| explains how to use the VALUES clause of

the INSERT statement to add a single row of column values to a table.

* In an application
rows into a table.

program, specify arrays of column values to insert multiple

“Inserting multiple rows of data from host variable arrays” on|

explains how to use host variable arrays in the VALUES clause of the
INSERT FOR n ROWS statement to add multiple rows of column values to a

table.

e Include a SELECT statement in the INSERT statement to tell DB2 that another
table or view contains the data for the new row or rows.|“Inserting rows into al

[table from another table” on page 29| explains how to use the SELECT statement

within an INSERT statement to add multiple rows to a table.

In each case, for every row you insert, you must provide a value for any column
that does not have a default value. For a column that meets one of the following
conditions, you can specify DEFAULT to tell DB2 to insert the default value for

that column:
e Is nullable.

* Is defined with a default value.
e Has data type ROWID. ROWID columns always have default values.
¢ Is an identity column. Identity columns always have default values.

Chapter 2. Working with tables and modifying data 27

The values that you can insert into a ROWID column or an identity column
depend on whether the column is defined with GENERATED ALWAYS or
GENERATED BY DEFAULT. See[“Inserting data into a ROWID column” on page
@land [‘Inserting data into an identity column” on page 3(| for more information.

Inserting a single row

You can use the VALUES clause of the INSERT statement to insert a single row of
column values into a table. You can either name all of the columns for which you
are providing values, or you can omit the list of column names. If you omit the
column name list, you must specify values for all of the columns.

Recommendation: For static INSERT statements, name all of the columns for
which you are providing values for because of the following reasons:

* Your INSERT statement is independent of the table format. (For example, you do
not need to change the statement when a column is added to the table.)

* You can verify that you are giving the values in order.
* Your source statements are more self-descriptive.

If you do not name the columns in a static INSERT statement, and a column is
added to the table, an error can occur if the INSERT statement is rebound. An
error will occur after any rebind of the INSERT statement unless you change the
INSERT statement to include a value for the new column. This is true even if the
new column has a default value.

When you list the column names, you must specify their corresponding values in
the same order as in the list of column names.

Example: The following statement inserts information about a new department
into the YDEPT table.

INSERT INTO YDEPT (DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, LOCATION)
VALUES ('E31', 'DOCUMENTATION', '000010', 'EO1', ' ');

After inserting a new department row into your YDEPT table, you can use a
SELECT statement to see what you have loaded into the table. The following SQL
statement shows you all the new department rows that you have inserted:
SELECT =

FROM YDEPT

WHERE DEPTNO LIKE 'E%'
ORDER BY DEPTNO;

The result table looks similar to the following output:

DEPTNO DEPTNAME MGRNO ~ ADMRDEPT LOCATION

EO1 SUPPORT SERVICES 000050 AOO ----------
E11 OPERATIONS 000090 EO1 -----------
E21 SOFTWARE SUPPORT 000100 EO1 ---mmm-----
E31 DOCUMENTATION 000010 EO1 —memmmme---

Example: The following statement inserts information about a new employee into
the YEMP table. Because YEMP has a foreign key, WORKDEPT, referencing the
primary key, DEPTNO, in YDEPT, the value inserted for WORKDEPT (E31) must
be a value of DEPTNO in YDEPT or null.

INSERT INTO YEMP

VALUES ('000400', 'RUTHERFORD', 'B', 'HAYES', 'E31', '5678', '1983-01-01',
'MANAGER', 16, 'M', '1943-07-10', 24000, 500, 1900);

28 Application Programming and SQL Guide

Example: The following statement also inserts a row into the YEMP table. Because
the unspecified columns allow nulls, DB2 inserts null values into the columns that
you do not specify. Because YEMP has a foreign key, WORKDEPT, referencing the
primary key, DEPTNO, in YDEPT, the value inserted for WORKDEPT (D11) must

be a value of DEPTNO in YDEPT or null.

INSERT INTO YEMP

(EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, PHONENO, JOB)
VALUES ('000410', 'MILLARD', 'K', 'FILLMORE', 'D11', '4888', 'MANAGER');

Inserting rows into a table from another table
You can copy data from one table into another table. Use a fullselect within an
INSERT statement to select rows from one table to insert into another table.

Example: The following SQL statement creates a table named TELE:

CREATE TABLE TELE
(NAME2 VARCHAR(15) NOT NULL,
NAME1 VARCHAR(12) NOT NULL,
PHONE CHAR(4));

The following statement copies data from DSN8810.EMP into the newly created
table:
INSERT INTO TELE

SELECT LASTNAME, FIRSTNME, PHONENO

FROM DSN8810.EMP
WHERE WORKDEPT = 'D21';

The two previous statements create and fill a table, TELE, that looks similar to the
following table:

NAME2 NAME1 PHONE
PULASKI EVA 7831
JEFFERSON JAMES 2094
MARINO SALVATORE 3780
SMITH DANIEL 0961
JOHNSON SYBIL 8953
PEREZ MARIA 9001
MONTEVERDE ROBERT 3780

The CREATE TABLE statement example creates a table which, at first, is empty.
The table has columns for last names, first names, and phone numbers, but does
not have any rows.

The INSERT statement fills the newly created table with data selected from the
DSN8810.EMP table: the names and phone numbers of employees in department
D21.

Example: The following CREATE statement creates a table that contains an
employee’s department name as well as phone number. The fullselect within the
INSERT statement fills the DLIST table with data from rows selected from two
existing tables, DSN8810.DEPT and DSN8810.EMP.

CREATE TABLE DLIST
(DEPT CHAR(3) NOT NULL,
DNAME VARCHAR(36) ,
LNAME VARCHAR(15) NOT NULL,
FNAME VARCHAR(12) NOT NULL,
INIT CHAR ,
PHONE CHAR(4))3

Chapter 2. Working with tables and modifying data 29

INSERT INTO DLIST
SELECT DEPTNO, DEPTNAME, LASTNAME, FIRSTNME, MIDINIT, PHONENO
FROM DSN8810.DEPT, DSN8810.EMP
WHERE DEPTNO = WORKDEPT;

Other ways to insert data
Besides using stand-alone INSERT statements, you can use the following two ways
to insert data into a table:

* You can write an application program to prompt for and enter large amounts of
data into a table. For details, see [Part 2, “Coding SQL in your host application|
[program,” on page 69

* You can also use the DB2 LOAD utility to enter data from other sources. See
Part 2 of [DB2 Utility Guide and Reference|for more information about the LOAD
utility.

Inserting data into a ROWID column

A ROWID column is a column that is defined with a ROWID data type. You must
have a column with a ROWID data type in a table that contains a LOB column.
The ROWID column is stored in the base table and is used to look up the actual
LOB data in the LOB table space. In addition, a ROWID column enables you to
write queries that navigate directly to a row in a table. For information about using
ROWID columns for direct-row access, see [“Using ROWID columns as keys” on|

Before you insert data into a ROWID column, you must know how the ROWID
column is defined. ROWID columns can be defined as GENERATED ALWAYS or
GENERATED BY DEFAULT. GENERATED ALWAYS means that DB2 generates a
value for the column, and you cannot insert data into that column. If the column is
defined as GENERATED BY DEFAULT, you can insert a value, and DB2 provides a
default value if you do not supply one.

Example: Suppose that tables T1 and T2 have two columns: an integer column and
a ROWID column. For the following statement to run successfully, ROWIDCOL2
must be defined as GENERATED BY DEFAULT.

INSERT INTO T2 (INTCOL2,ROWIDCOL2)
SELECT = FROM T1;

If ROWIDCOL2 is defined as GENERATED ALWAYS, you cannot insert the
ROWID column data from T1 into T2, but you can insert the integer column data.
To insert only the integer data, use one of the following methods:
* Specify only the integer column in your INSERT statement, as in the following
statement:
INSERT INTO T2 (INTCOL2)
SELECT INTCOL1 FROM T1;
* Specify the OVERRIDING USER VALUE clause in your INSERT statement to tell
DB2 to ignore any values that you supply for system-generated columns, as in
the following statement:

INSERT INTO T2 (INTCOL2,ROWIDCOL2) OVERRIDING USER VALUE
SELECT * FROM T1;

Inserting data into an identity column

An identity column is a numeric column, defined in a CREATE TABLE or ALTER
TABLE statement, that has ascending or descending values. For an identity column
to be as useful as possible, its values should also be unique. The column has a
SMALLINT, INTEGER, or DECIMAL(p,0) data type and is defined with the AS
IDENTITY clause. The AS IDENTITY clause specifies that the column is an identity

30 Application Programming and SQL Guide

column. For information about using identity columns to uniquely identify rows,
see ["Using identity columns as keys” on page 262|

Before you insert data into an identity column, you must know how the column is
defined. Identity columns are defined with the GENERATED ALWAYS or
GENERATED BY DEFAULT clause. GENERATED ALWAYS means that DB2
generates a value for the column, and you cannot insert data into that column. If
the column is defined as GENERATED BY DEFAULT, you can insert a value, and
DB2 provides a default value if you do not supply one.

Example: Suppose that tables T1 and T2 have two columns: a character column
and an integer column that is defined as an identity column. For the following
statement to run successfully, IDENTCOL2 must be defined as GENERATED BY
DEFAULT.

INSERT INTO T2 (CHARCOL2,IDENTCOL2)
SELECT * FROM T1;

If IDENTCOL2 is defined as GENERATED ALWAYS, you cannot insert the identity
column data from T1 into T2, but you can insert the character column data. To
insert only the character data, use one of the following methods:

* Specify only the character column in your INSERT statement, as in the following
statement:

INSERT INTO T2 (CHARCOL2)
SELECT CHARCOL1 FROM T1;
* Specify the OVERRIDING USER VALUE clause in your INSERT statement to tell
DB2 to ignore any values that you supply for system-generated columns, as in
the following statement:

INSERT INTO T2 (CHARCOL2,IDENTCOL2) OVERRIDING USER VALUE
SELECT * FROM T1;

Selecting values as you insert: SELECT from INSERT

You can select values from rows that are being inserted by specifying the INSERT

statement in the FROM clause of the SELECT statement. When you insert one or

more new rows into a table, you can retrieve:

* The value of an automatically generated column such as a ROWID or identity
column

¢ Any default values for columns

* All values for an inserted row, without specifying individual column names

 All values that are inserted by a multiple-row INSERT operation

* Values that are changed by a BEFORE INSERT trigger

Example: In addition to examples that use the DB2 sample tables, the examples in
this section use an EMPSAMP table that has the following definition:

CREATE TABLE EMPSAMP
(EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
NAME CHAR(30),
SALARY DECIMAL(10,2),
DEPTNO SMALLINT,
LEVEL CHAR(30),
HIRETYPE VARCHAR(30) NOT NULL WITH DEFAULT 'New Hire',
HIREDATE DATE NOT NULL WITH DEFAULT);

Assume that you need to insert a row for a new employee into the EMPSAMP

table. To find out the values for the generated EMPNO, HIRETYPE, and
HIREDATE columns, use the following SELECT from INSERT statement:

Chapter 2. Working with tables and modifying data 31

SELECT EMPNO, HIRETYPE, HIREDATE
FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY, DEPTNO, LEVEL)
VALUES('Mary Smith', 35000.00, 11, 'Associate'));

The SELECT statement returns the DB2-generated identity value for the EMPNO
column, the default value ‘New Hire’ for the HIRETYPE column, and the value of
the CURRENT DATE special register for the HIREDATE column.

Recommendation: Use the SELECT from INSERT statement to insert a row into a
parent table and retrieve the value of a primary key that was generated by DB2 (a
ROWID or identity column). In another INSERT statement, specify this generated
value as a value for a foreign key in a dependent table. For an example of this
method, see [“Parent keys and foreign keys” on page 264)

Result table of the INSERT operation

The rows that are inserted into the target table produce a result table whose
columns can be referenced in the SELECT list of the query. The columns of the
result table are affected by the columns, constraints, and triggers that are defined
for the target table:

* The result table includes DB2-generated values for identity columns, ROWID
columns, or columns that are based on expressions.

* Before DB2 generates the result table, it enforces any constraints that affect the
insert operation (that is, check constraints, unique index constraints, and
referential integrity constraints).

* The result table includes any changes that result from a BEFORE trigger that is
activated by the insert operation. An AFTER trigger does not affect the values in
the result table. For information about triggers, see [Chapter 12, “Using triggers|
[for active data,” on page 269.

Example: Suppose a BEFORE INSERT trigger is created on table EMPSAMP to
give all new employees at the Associate level a $5000 increase in salary. The trigger
has the following definition:
CREATE TRIGGER NEW_ASSOC
NO CASCADE BEFORE INSERT ON EMPSAMP
REFERENCING NEW AS NEWSALARY
FOR EACH ROW MODE DB2SQL
WHEN LEVEL = 'Associate'
BEGIN ATOMIC
SET NEWSALARY.SALARY = NEWSALARY.SALARY + 5000.00;
END;

The INSERT statement in the FROM clause of the following SELECT statement
inserts a new employee into the EMPSAMP table:
SELECT NAME, SALARY

FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY, LEVEL)
VALUES('Mary Smith', 35000.00, 'Associate'));

The SELECT statement returns a salary of 40000.00 for Mary Smith instead of the
initial salary of 35000.00 that was explicitly specified in the INSERT statement.

Selecting values when you insert a single row

When you insert a new row into a table, you can retrieve any column in the result
table of the SELECT from INSERT statement. When you embed this statement in
an application, you retrieve the row into host variables by using the SELECT ...
INTO form of the statement. For information about using host variables and
SELECT ... INTO, see [“Using host variables ” on page 76.

32 Application Programming and SQL Guide

Example: You can retrieve all the values for a row that is inserted into a structure:

EXEC SQL SELECT * INTO :empstruct
FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY, DEPTNO, LEVEL)
VALUES('Mary Smith', 35000.00, 11, 'Associate'));

For this example, :empstruct is a host variable structure that is declared with
variables for each of the columns in the EMPSAMP table.

Selecting values when you insert data into a view

If the INSERT statement references a view that is defined with a search condition,
that view must be defined with the WITH CASCADED CHECK OPTION. When
you insert data into the view, the result table of the SELECT from INSERT
statement includes only rows that satisfy the view definition.

Example: Because view V1 is defined with the WITH CASCADED CHECK
OPTION, you can reference V1 in the INSERT statement:
CREATE VIEW V1 AS

SELECT C1, I1 FROM T1 WHERE I1 > 10
WITH CASCADED CHECK OPTON;

SELECT C1 FROM
FINAL TABLE (INSERT INTO V1 (I1) VALUES(12));

The value 12 satisfies the search condition of the view definition, and the result
table consists of the value for C1 in the inserted row.

If you use a value that does not satisfy the search condition of the view definition,
the insert operation fails, and DB2 returns an error.

Selecting values when you insert multiple rows

In an application program, to retrieve values from the insertion of multiple rows,
declare a cursor so that the INSERT statement is in the FROM clause of the
SELECT statement of the cursor. For information about using cursors, see
(Chapter 7, “Using a cursor to retrieve a set of rows,” on page 99/

Example: Inserting rows with ROWID values: To see the values of the ROWID
columns that are inserted into the employee photo and resume table, you can
declare the following cursor:
EXEC SQL DECLARE CS1 CURSOR FOR

SELECT EMP_ROWID

FROM FINAL TABLE (INSERT INTO DSN8810.EMP_PHOTO_RESUME (EMPNO)
SELECT EMPNO FROM DSN8810.EMP);

Example: Using the FETCH FIRST clause: To see only the first five rows that are
inserted into the employee photo and resume table, use the FETCH FIRST clause:
EXEC SQL DECLARE CS2 CURSOR FOR
SELECT EMP_ROWID
FROM FINAL TABLE (INSERT INTO DSN8810.EMP_PHOTO_RESUME (EMPNO)
SELECT EMPNO FROM DSN8810.EMP)
FETCH FIRST 5 ROWS ONLY;

Example: Using the INPUT SEQUENCE clause: To retrieve rows in the order in
which they are inserted, use the INPUT SEQUENCE clause:

Chapter 2. Working with tables and modifying data 33

EXEC SQL DECLARE CS3 CURSOR FOR
SELECT EMP_ROWID
FROM FINAL TABLE (INSERT INTO DSN8810.EMP_PHOTO RESUME (EMPNO)
VALUES (:hva_empno)
FOR 5 ROWS)
ORDER BY INPUT SEQUENCE;

The INPUT SEQUENCE clause can be specified only if an INSERT statement is in
the FROM clause of the SELECT statement. In this example, the rows are inserted
from an array of employee numbers. For information about the multiple-row

INSERT statement, see |[“Inserting multiple rows of data from host variable arrays’|
_m1 page 83.

Example: Inserting rows with multiple encoding CCSIDs: Suppose that you want
to populate an ASCII table with values from an EBCDIC table and then see
selected values from the ASCII table. You can use the following cursor to select the
EBCDIC columns, populate the ASCII table, and then retrieve the ASCII values:
EXEC SQL DECLARE CS4 CURSOR FOR

SELECT C1, C2

FROM FINAL TABLE (INSERT INTO ASCII TABLE
SELECT * FROM EBCDIC_TABLE);

Result table of the cursor when you insert multiple rows

In an application program, when you insert multiple rows into a table, you declare
a cursor so that the INSERT statement is in the FROM clause of the SELECT
statement of the cursor. The result table of the cursor is determined during OPEN
cursor processing. The result table may or may not be affected by other processes
in your application.

Effect on cursor sensitivity: When you declare a scrollable cursor, the cursor
must be declared with the INSENSITIVE keyword if an INSERT statement is in the
FROM clause of the cursor specification. The result table is generated during
OPEN cursor processing and does not reflect any future changes. You cannot
declare the cursor with the SENSITIVE DYNAMIC or SENSITIVE STATIC
keiwords. For information about cursor sensitivity, see[“Using a scrollable cursor”]|

Effect of searched updates and deletes: When you declare a non-scrollable
cursor, any searched updates or deletes do not affect the result table of the cursor.
The rows of the result table are determined during OPEN cursor processing.

Example: Assume that your application declares a cursor, opens the cursor,
performs a fetch, updates the table, and then fetches additional rows:

EXEC SQL DECLARE CS1 CURSOR FOR
SELECT SALARY
FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY, LEVEL)
SELECT NAME, INCOME, BAND FROM OLD EMPLOYEE);
EXEC SQL OPEN CS1;
EXEC SQL FETCH CS1 INTO :hv_salary;
/* print fetch result */

EXEC SQL UPDATE EMPSAMP SET SALARY = SALARY + 500;
while (SQLCODE == 0) {

EXEC SQL FETCH CS1 INTO :hv_salary;

/* print fetch result */

34 Application Programming and SQL Guide

The fetches that occur after the update processing return the rows that were
generated during OPEN cursor processing. However, if you use a simple SELECT
(with no INSERT statement in the FROM clause), the fetches might return the
updated values, depending on the access path that DB2 uses.

Effect of WITH HOLD: When you declare a cursor with the WITH HOLD
option, and open the cursor, all of the rows are inserted into the target table. The
WITH HOLD option has no effect on the SELECT from INSERT statement of the
cursor definition. After your application performs a commit, you can continue to
retrieve all of the inserted rows. For information about held cursors, see
inon-held cursors” on page 118

Example: Assume that the employee table in the DB2 sample application has five
rows. Your application declares a WITH HOLD cursor, opens the cursor, fetches
two rows, performs a commit, and then fetches the third row successfully:

EXEC SQL DECLARE CS2 CURSOR WITH HOLD FOR

SELECT EMP_ROWID

FROM FINAL TABLE (INSERT INTO DSN8810.EMP_PHOTO_RESUME (EMPNO)

SELECT EMPNO FROM DSN8810.EMP);

EXEC SQL OPEN CS2; /* Inserts 5 rows =/
EXEC SQL FETCH CS2 INTO :hv_rowid; /* Retrieves ROWID for 1st row */
EXEC SQL FETCH CS2 INTO :hv_rowid; /* Retrieves ROWID for 2nd row */
EXEC SQL COMMIT; /* Commits 5 rows =/
EXEC SQL FETCH CS2 INTO :hv_rowid; /* Retrieves ROWID for 3rd row =*/

Effect of SAVEPOINT and ROLLBACK: When you set a savepoint prior to
opening the cursor and then roll back to that savepoint, all of the insertions are
undone. For information about savepoints and ROLLBACK processing, see |”Usina
lsavepoints to undo selected changes within a unit of work” on page 427

Example: Assume that your application declares a cursor, sets a savepoint, opens
the cursor, sets another savepoint, rolls back to the second savepoint, and then rolls
back to the first savepoint:
EXEC SQL DECLARE CS3 CURSOR FOR

SELECT EMP_ROWID

FROM FINAL TABLE (INSERT INTO DSN8810.EMP_PHOTO RESUME (EMPNO)
SELECT EMPNO FROM DSN8810.EMP);

EXEC SQL SAVEPOINT A ON ROLLBACK RETAIN CURSORS; /* Sets 1st savepoint */
EXEC SQL OPEN CS3;
EXEC SQL SAVEPOINT B ON ROLLBACK RETAIN CURSORS; /* Sets 2nd savepoint */

EXEC SQL ROLLBACK TO SAVEPOINT B; /* Rows still in DSN8810.EMP_PHOTO RESUME

*
S~

EXEC SQL ROLLBACK TO SAVEPOINT Aj; /* A11 inserted rows are undone */

What happens if an error occurs

In an application program, when you insert one or more rows into a table by using
the SELECT from INSERT statement, the result table of the insert operation may or
may not be affected depending on where the error occurred in the application
processing.

During SELECT INTO processing: If the insert processing or the select
processing fails during a SELECT INTO statement, no rows are inserted into the
target table, and no rows are returned from the result table of the insert operation.

Example: Assume that the employee table of the DB2 sample application has one
row, and that the SALARY column has a value of 9 999 000.00.

Chapter 2. Working with tables and modifying data 35

EXEC SQL SELECT EMPNO INTO :hv_empno
FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY)
SELECT FIRSTNAME || MIDINIT || LASTNAME,
SALARY + 10000.00
FROM DSN8810.EMP)

The addition of 10000.00 causes a decimal overflow to occur, and no rows are
inserted into the EMPSAMP table.

During OPEN cursor processing: If the insertion of any row fails during the
OPEN cursor processing, all previously successful insertions are undone. The result
table of the INSERT is empty.

During FETCH processing: If the FETCH statement fails while retrieving rows
from the result table of the insert operation, a negative SQLCODE is returned to
the application, but the result table still contains the original number of rows that
was determined during the OPEN cursor processing. At this point, you can undo
all of the inserts.

Example: Assume that the result table contains 100 rows and the 90th row that is
being fetched from the cursor returns a negative SQLCODE:

EXEC SQL DECLARE CS1 CURSOR FOR

SELECT EMPNO

FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY)

SELECT FIRSTNAME || MIDINIT || LASTNAME, SALARY + 10000.00
FROM DSN8810.EMP);

EXEC SQL OPEN CS1; /* Inserts 100 rows */
while (SQLCODE == 0)

EXEC SQL FETCH CS1 INTO :hv_empno;

if (SQLCODE == -904) /* If SQLCODE is -904, undo all inserts */
EXEC SQL ROLLBACK;
else /* Else, commit inserts =*/

EXEC SQL COMMIT;

Updating current values: UPDATE

To change the data in a table, use the UPDATE statement. You can also use the
UPDATE statement to remove a value from a row’s column (without removing the
row) by changing the column’s value to null.

Example: Suppose an employee relocates. To update several items of the
employee’s data in the YEMP work table to reflect the move, you can execute:
UPDATE YEMP

SET JOB = 'MANAGER ',

PHONENO ='5678"
WHERE EMPNO = '000400';

You cannot update rows in a created temporary table, but you can update rows in
a declared temporary table.

The SET clause names the columns that you want to update and provides the
values you want to assign to those columns. You can replace a column value in the
SET clause with any of the following items:

¢ A null value

The column to which you assign the null value must not be defined as NOT
NULL.

* An expression

An expression can be any of the following items:

36 Application Programming and SQL Guide

— A column

— A constant

— A fullselect that returns a scalar
— A host variable

— A special register

In addition, you can replace one or more column values in the SET clause with the
column values in a row that is returned by a fullselect.

Next, identify the rows to update:
* To update a single row, use a WHERE clause that locates one, and only one, row

* To update several rows, use a WHERE clause that locates only the rows you
want to update.

If you omit the WHERE clause, DB2 updates every row in the table or view with
the values you supply.

If DB2 finds an error while executing your UPDATE statement (for example, an
update value that is too large for the column), it stops updating and returns an
error. No rows in the table change. Rows already changed, if any, are restored to
their previous values. If the UPDATE statement is successful, SQLERRD(3) is set to
the number of rows that are updated.

Example: The following statement supplies a missing middle initial and changes
the job for employee 000200.
UPDATE YEMP

SET MIDINIT
WHERE EMPNO

'"H', JOB = 'FIELDREP'
'000200";

The following statement gives everyone in department D11 a raise of 400.00. The
statement can update several rows.
UPDATE YEMP

SET SALARY = SALARY + 400.00
WHERE WORKDEPT = 'D11';

The following statement sets the salary and bonus for employee 000190 to the
average salary and minimum bonus for all employees.
UPDATE YEMP

SET (SALARY, BONUS) =

(SELECT AVG(SALARY), MIN(BONUS)

FROM EMP)
WHERE EMPNO = '000190';

Deleting rows: DELETE

You can use the DELETE statement to remove entire rows from a table. The
DELETE statement removes zero or more rows of a table, depending on how many
rows satisfy the search condition you specify in the WHERE clause. If you omit a
WHERE clause from a DELETE statement, DB2 removes all the rows from the
table or view you have named. The DELETE statement does not remove specific
columns from the row.

You can use DELETE to remove all rows from a created temporary table or

declared temporary table. However, you can use DELETE with a WHERE clause to
remove only selected rows from a declared temporary table.

Chapter 2. Working with tables and modifying data 37

This DELETE statement deletes each row in the YEMP table that has an employee
number 000060.

DELETE FROM YEMP
WHERE EMPNO = '000060';

When this statement executes, DB2 deletes any row from the YEMP table that
meets the search condition.

If DB2 finds an error while executing your DELETE statement, it stops deleting
data and returns error codes in the SQLCODE and SQLSTATE host variables or
related fields in the SQLCA. The data in the table does not change.

If the DELETE is successful, SQLERRD(3) in the SQLCA contains the number of
deleted rows. This number includes only the number of deleted rows in the table
that is specified in the DELETE statement. Rows that are deleted (in other tables)
according to the CASCADE rule are not included in SQLERRD(3).

Deleting every row in a table

The DELETE statement is a powerful statement that deletes all rows of a table
unless you specify a WHERE clause to limit it. (With segmented table spaces,

deleting all rows of a table is very fast.) For example, the following statement

deletes every row in the YDEPT table:

DELETE FROM YDEPT;

If the statement executes, the table continues to exist (that is, you can insert rows
into it), but it is empty. All existing views and authorizations on the table remain
intact when using DELETE. By comparison, using DROP TABLE drops all views
and authorizations, which can invalidate plans and packages. For information
about the DROP statement, see [“Dropping tables: DROP TABLE” on page 25.|

38 Application Programming and SQL Guide

Chapter 3. Joining data from more than one table

Sometimes the information that you want to see is not in a single table. To form a
row of the result table, you might want to retrieve some column values from one
table and some column values from another table. You can use a SELECT
statement to retrieve and join column values from two or more tables into a single
row.

DB2 supports the following types of joins: inner join, left outer join, right outer
join, and full outer join. You can specify joins in the FROM clause of a query.

The examples in this section use the following two tables to show various types of

joins:

The PARTS table The PRODUCTS table
PART PROD# SUPPLIER PROD# PRODUCT PRICE
WIRE 10 ACWF 505 SCREWDRIVER 3.70
0IL 160 WESTERN_CHEM 30 RELAY 7.55
MAGNETS 10 BATEMAN 205 SAW 18.90
PLASTIC 30 PLASTIK_CORP 10 GENERATOR 45.75

BLADES 205 ACE_STEEL

ﬂlustrates how these two tables can be combined using the three outer
join functions.

PARTS PRODUCTS

PART PROD# PROD# PRICE Unmatched
WIRE 10 505 370 «——row
MAGNETS 10 | Matches | 3g 45.75
BLADES 205 205 18.90

Unmatched PLASTIC 30 30 7.55

row ————» QOIL 160 /

LEFT OUTER JOIN FULL OUTER JOIN RIGHT OUTER JOIN

PART PROD# PRICE PART PROD# PRICE PART PROD# PRICE

WIRE 10 45.75 WIRE 10 45.75 WIRE 10 45.75
MAGNETS 10 45.75 MAGNETS 10 45.75 MAGNETS 10 45.75
BLADES 205 18.90 BLADES 205 18.90 BLADES 205 18.90

PLASTIC 30 7.55 PLASTIC 30 7.55 PLASTIC 30 7.55
oIL 160 (null) olIL 160 (null) (null) 505 3.70
(null) 505 3.70

Figure 2. Three outer joins from the PARTS and PRODUCTS tables

The result table contains data joined from all of the tables, for rows that satisfy the
search conditions.

© Copyright IBM Corp. 1983, 2006 39

The result columns of a join have names if the outermost SELECT list refers to
base columns. But, if you use a function (such as COALESCE or VALUE) to build
a column of the result, that column does not have a name unless you use the AS
clause in the SELECT list.

Inner join

To request an inner join, execute a SELECT statement in which you specify the
tables that you want to join in the FROM clause, and specify a WHERE clause or
an ON clause to indicate the join condition. The join condition can be any simple
or compound search condition that does not contain a subquery reference. See
Chapter 4 of [DB2 SQL Reference|for the complete syntax of a join condition.

In the simplest type of inner join, the join condition is columnl=column2.

Example: You can join the PARTS and PRODUCTS tables on the PROD# column to
get a table of parts with their suppliers and the products that use the parts.

To do this, you can use either one of the following SELECT statements:

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
FROM PARTS, PRODUCTS
WHERE PARTS.PROD# = PRODUCTS.PROD#;

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
FROM PARTS INNER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result table looks like the following output:

PART SUPPLIER PROD# PRODUCT
WIRE ACWF 10 GENERATOR
MAGNETS ~ BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW

Notice three things about this example:

* A part in the parts table (OIL) has product (#160), which is not in the products
table. A product (SCREWDRIVER, #505) has no parts listed in the parts table.
Neither OIL nor SCREWDRIVER appears in the result of the join.

An outer join, however, includes rows where the values in the joined columns do
not match.

* You can explicitly specify that this join is an inner join (not an outer join). Use
INNER JOIN in the FROM clause instead of the comma, and use ON to specify
the join condition (rather than WHERE) when you explicitly join tables in the
FROM clause.

* If you do not specify a WHERE clause in the first form of the query, the result
table contains all possible combinations of rows for the tables identified in the
FROM clause. You can obtain the same result by specifying a join condition that
is always true in the second form of the query, as in the following statement:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS INNER JOIN PRODUCTS
ON 1=1;

In either case, the number of rows in the result table is the product of the
number of rows in each table.

40 Application Programming and SQL Guide

You can specify more complicated join conditions to obtain different sets of results.
For example, to eliminate the suppliers that begin with the letter A from the table
of parts, suppliers, product numbers and products, write a query like the following
query:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS INNER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#
AND SUPPLIER NOT LIKE 'A%';

The result of the query is all rows that do not have a supplier that begins with A.
The result table looks like the following output:

PART SUPPLIER PROD# PRODUCT
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY

Example of joining a table to itself by using an inner join: In the following
example, A indicates the first instance of table DSN8810.PROJ and B indicates the
second instance of this table. The join condition is such that the value in column
PROJNO in table DSN8810.PROJ A must be equal to a value in column MAJPROJ
in table DSN8810.PROJ B.

The following SQL statement joins table DSN8810.PROJ to itself and returns the
number and name of each major project followed by the number and name of the
project that is part of it:

SELECT A.PROJNO, A.PROJNAME, B.PROJNO, B.PROJNAME

FROM DSN8810.PROJ A, DSN8810.PROJ B
WHERE A.PROJNO = B.MAJPROJ;

The result table looks similar to the following output:

PROJNO PROJNAME PROJNO PROJNAME

AD3100 ADMIN SERVICES AD3110 GENERAL AD SYSTEMS
AD3110 GENERAL AD SYSTEMS AD3111 PAYROLL PROGRAMMING
AD3110 GENERAL AD SYSTEMS AD3112 PERSONNEL PROGRAMMG
0P2010 SYSTEMS SUPPORT 0P2013 DB/DC SUPPORT

In this example, the comma in the FROM clause implicitly specifies an inner join,
and it acts the same as if the INNER JOIN keywords had been used. When you
use the comma for an inner join, you must specify the join condition on the
WHERE clause. When you use the INNER JOIN keywords, you must specify the
join condition on the ON clause.

Full outer join

The clause FULL OUTER JOIN includes unmatched rows from both tables. If any
column of the result table does not have a value, that column has the null value in
the result table.

The join condition for a full outer join must be a simple search condition that
compares two columns or an invocation of a cast function that has a column name

as its argument.

Example: The following query performs a full outer join of the PARTS and
PRODUCTS tables:

Chapter 3. Joining data from more than one table 41

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result table from the query looks similar to the following output:

PART SUPPLIER PROD# PRODUCT
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW

0IL WESTERN_CHEM 160 -----------
——————————————————— --- SCREWDRIVER

Example of Using COALESCE or VALUE: COALESCE is the keyword specified by
the SQL standard as a synonym for the VALUE function. This function, by either
name, can be particularly useful in full outer join operations, because it returns the
first non-null value from the pair of join columns.

The product number in the result of the example for [“Full outer join” on page 41|is
null for SCREWDRIVER, even though the PRODUCTS table contains a product
number for SCREWDRIVER. If you select PRODUCTS.PROD# instead, PROD# is
null for OIL. If you select both PRODUCTS.PROD# and PARTS.PROD#, the result
contains two columns, both of which contain some null values. You can merge data
from both columns into a single column, eliminating the null values, by using the
COALESCE function.

With the same PARTS and PRODUCTS tables, the following example merges the
non-null data from the PROD# columns:
SELECT PART, SUPPLIER,

COALESCE (PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM, PRODUCT

FROM PARTS FULL OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result table looks similar to the following output:

PART SUPPLIER PRODNUM PRODUCT
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW

0IL WESTERN_CHEM 160 -----------
——————————————————— 505 SCREWDRIVER

The AS clause (AS PRODNUM) provides a name for the result of the COALESCE

function.

Left outer join

The clause LEFT OUTER JOIN includes rows from the table that is specified before
LEFT OUTER JOIN that have no matching values in the table that is specified after

LEFT OUTER JOIN.

As in an inner join, the join condition can be any simple or compound search
condition that does not contain a subquery reference.

Example: To include rows from the PARTS table that have no matching values in
the PRODUCTS table, and to include prices that exceed $10.00 , run the following

query:

42 Application Programming and SQL Guide

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT, PRICE
FROM PARTS LEFT OUTER JOIN PRODUCTS
ON PARTS.PROD#=PRODUCTS.PROD#
AND PRODUCTS.PRICE>10.00;

The result table looks similar to the following output:

PART SUPPLIER PROD# PRODUCT PRICE
WIRE ACWF 10 GENERATOR 45.75
MAGNETS BATEMAN 10 GENERATOR 45.75
PLASTIC PLASTIK_CORP 30 = ===mmmmmmmm mmmeeee
BLADES ACE_STEEL 205 SAW 18.90
0IL WESTERN_CHEM 160 --==---mmmm —mmmmeo

A row from the PRODUCTS table is in the result table only if its product number
matches the product number of a row in the PARTS table and the price is greater
than $10.00 for that row. Rows in which the PRICE value does not exceed $10.00

are included in the result of the join, but the PRICE value is set to null.

In this result table, the row for PROD# 30 has null values on the right two columns
because the price of PROD# 30 is less than $10.00. PROD# 160 has null values on
the right two columns because PROD# 160 does not match another product
number.

Right outer join

The clause RIGHT OUTER JOIN includes rows from the table that is specified after
RIGHT OUTER JOIN that have no matching values in the table that is specified
before RIGHT OUTER JOIN.

As in an inner join, the join condition can be any simple or compound search
condition that does not contain a subquery reference.

Example: To include rows from the PRODUCTS table that have no corresponding
rows in the PARTS table, execute this query:
SELECT PART, SUPPLIER, PRODUCTS.PROD#, PRODUCT, PRICE

FROM PARTS RIGHT OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#
AND PRODUCTS.PRICE>10.00;

The result table looks similar to the following output:

PART SUPPLIER PROD# PRODUCT PRICE
WIRE ACWF 10 GENERATOR 45.75
MAGNETS BATEMAN 10 GENERATOR 45.75
BLADES ACE_STEEL 205 SAW 18.90
---------------------- 30 RELAY 7.55
---------------------- 505 SCREWDRIVER 3.70

A row from the PARTS table is in the result table only if its product number
matches the product number of a row in the PRODUCTS table and the price is
greater than 10.00 for that row.

Because the PRODUCTS table can have rows with nonmatching product numbers
in the result table, and the PRICE column is in the PRODUCTS table, rows in
which PRICE is less than or equal to 10.00 are included in the result. The PARTS
columns contain null values for these rows in the result table.

Chapter 3. Joining data from more than one table 43

SQL rules for statements containing join operations

SQL rules dictate that the result of a SELECT statement look as if the clauses had
been evaluated in this order:

« FROM

« WHERE

* GROUP BY
* HAVING
e SELECT

A join operation is part of a FROM clause; therefore, for the purpose of predicting
which rows will be returned from a SELECT statement containing a join operation,
assume that the join operation is performed first.

Example: Suppose that you want to obtain a list of part names, supplier names,
product numbers, and product names from the PARTS and PRODUCTS tables. You
want to include rows from either table where the PROD# value does not match a
PROD# value in the other table, which means that you need to do a full outer join.
You also want to exclude rows for product number 10. Consider the following

SELECT statement:
SELECT PART, SUPPLIER,

VALUE (PARTS.PROD#,PRODUCTS . PROD#) AS PRODNUM, PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#

WHERE PARTS.PROD# <> '10' AND PRODUCTS.PROD# <> '10';

The following result is not what you wanted:

PART SUPPLIER
PLASTIC PLASTIK_CORP
BLADES ACE_STEEL

PRODNUM PRODUCT
30 RELAY
205 SAW

DB2 performs the join operation first. The result of the join operation includes
rows from one table that do not have corresponding rows from the other table.
However, the WHERE clause then excludes the rows from both tables that have
null values for the PROD# column.

The following statement is a correct SELECT statement to produce the list:

SELECT PART, SUPPLIER,

VALUE(X.PROD#, Y.PROD#) AS PRODNUM, PRODUCT

FROM

(SELECT PART, SUPPLIER, PROD# FROM PARTS WHERE PROD# <> '10') X

FULL OUTER JOIN

(SELECT PROD#, PRODUCT FROM PRODUCTS WHERE PROD# <> '10') Y

ON X.PROD# = Y.PROD#;

For this statement, DB2 applies the WHERE clause to each table separately. DB2
then performs the full outer join operation, which includes rows in one table that
do not have a corresponding row in the other table. The final result includes rows
with the null value for the PROD# column and looks similar to the following

output:

PART SUPPLIER

0IL WESTERN_CHEM
BLADES ACE_STEEL
PLASTIC PLASTIK CORP

44 Application Programming and SQL Guide

PRODNUM PRODUCT

160 mmemmeeeee-
205 SAW

30 RELAY

505 SCREWDRIVER

Using more than one join in an SQL statement

Using more than one join: You can join more than two tables. Suppose you want a
result table that shows employees who have projects that they are responsible for,
their projects, and their department names. You need to join three tables to get all

the information. You can use the following SELECT statement:

SELECT EMPNO, LASTNAME, DEPTNAME, PROJNO
FROM DSN8810.EMP, DSN8810.PROJ, DSN8810.DEPT

The result table looks similar to the following output:

EMPNO

000010
000010
000020
000030
000030
000050
000050
000060
000070
000090
000100
000150
000160
000220
000230
000250
000270
000320
000330
000340

DB2 determines the intermediate and final results of the previous query by

WHERE EMPNO
AND WORKDEPT

LASTNAME

THOMPSON
KWAN

KWAN
GEYER
GEYER
STERN
PULASKI
HENDERSON
SPENSER
ADAMSON
PIANKA
LUTZ
JEFFERSON
SMITH
PEREZ
MEHTA

LEE
GOUNOT

RESPEMP
DSN8810.DEPT.DEPTNO;

DEPTNAME

SPIFFY COMPUTER SERVICE DIV
SPIFFY COMPUTER SERVICE DIV
PLANNING

INFORMATION CENTER
INFORMATION CENTER

SUPPORT SERVICES

SUPPORT SERVICES
MANUFACTURING SYSTEMS
ADMINISTRATION SYSTEMS
OPERATIONS

SOFTWARE SUPPORT
MANUFACTURING SYSTEMS
MANUFACTURING SYSTEMS
MANUFACTURING SYSTEMS
ADMINISTRATION SYSTEMS
ADMINISTRATION SYSTEMS
ADMINISTRATION SYSTEMS
SOFTWARE SUPPORT

SOFTWARE SUPPORT

SOFTWARE SUPPORT

performing the following logical steps:

1. Join the employee and project tables on the employee number, dropping the
rows with no matching employee number in the project table.

2. Join the intermediate result table with the department table on matching
department numbers.

3. Process the select list in the final result table, leaving only four columns.

PROJNO

AD3100
MA2100
PL2100
IF1000
1F2000
0P1000
0P2000
MA2110
AD3110
0P1010
0P2010
MA2112
MA2113
MA2111
AD3111
AD3112
AD3113
0P2011
0P2012
0P2013

Using more than one join type: You can use more than one join type in the FROM

clause. Suppose that you want a result table that shows employees whose last

name begins with 'S’” or a letter after 'S’, their department names, and the projects
that they are responsible for, if any. You can use the following SELECT statement:

SELECT EMPNO, LASTNAME, DEPTNAME, PROJNO
FROM DSN8810.EMP INNER JOIN DSN8810.DEPT

ON WORKDEPT = DSN8810.DEPT.DEPTNO

LEFT OUTER JOIN DSN8810.PROJ

ON EMPNO = RESPEMP
WHERE LASTNAME > 'S';

The result table looks like similar to the following output:

EMPNO

000020
000060
000100
000170

LASTNAME

THOMPSON
STERN
SPENSER
YOSHIMURA

DEPTNAME PROJNO
PLANNING PL2100
MANUFACTURING SYSTEMS MA2110
SOFTWARE SUPPORT 0P2010

MANUFACTURING SYSTEMS ---

Chapter 3. Joining data from more than one table

45

000180 SCOUTTEN MANUFACTURING SYSTEMS ------

000190 WALKER MANUFACTURING SYSTEMS ~ ------
000250 SMITH ADMINISTRATION SYSTEMS AD3112
000280 SCHNEIDER OPERATIONS —mmee
000300 SMITH OPERATIONS ===
000310 SETRIGHT OPERATIONS ===
200170 YAMAMOTO MANUFACTURING SYSTEMS ~ ------
200280 SCHWARTZ OPERATIONS ===
200310 SPRINGER OPERATIONS —mmeeo
200330 WONG SOFTWARE SUPPORT ------

DB2 determines the intermediate and final results of the previous query by

performing the following logical steps:

1. Join the employee and department tables on matching department numbers,
dropping the rows where the last name begins with a letter before 'S’

2. Join the intermediate result table with the project table on the employee
number, keeping the rows with no matching employee number in the project
table.

3. Process the select list in the final result table, leaving only four columns.

Using nested table expressions and user-defined table functions in

joins

An operand of a join can be more complex than the name of a single table. You
can use:

* A nested table expression, which is a fullselect enclosed in parentheses and
followed by a correlation name

e A user-defined table function, which is a user-defined function that returns a
table

Example of using a nested table expression as the right operand of a join: The
following query contains a fullselect as the right operand of a left outer join with
the PROJECTS table. The correlation name is TEMP.

SELECT PROJECT, COALESCE(PROJECTS.PROD#, PRODNUM) AS PRODNUM,
PRODUCT, PART, UNITS
FROM PROJECTS LEFT JOIN
(SELECT PART,
COALESCE (PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM,
PRODUCTS . PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#) AS TEMP
ON PROJECTS.PROD# = PRODNUM;

The following statement is the nested table expression:

(SELECT PART,
COALESCE (PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM,
PRODUCTS . PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#) AS TEMP

Example of using correlated references: In the following example, the correlation
name that is used for the nested table expression is CHEAP_PARTS. The correlated
references are CHEAP_ PARTS.PROD# and CHEAP_PARTS.PRODUCT.
SELECT CHEAP_PARTS.PROD#, CHEAP_PARTS.PRODUCT

FROM (SELECT PROD#, PRODUCT

FROM PRODUCTS
WHERE PRICE < 10) AS CHEAP_PARTS;

The result table looks similar to the following output:

46 Application Programming and SQL Guide

PROD# PRODUCT

505 SCREWDRIVER
30 RELAY

The correlated references are valid because they do not occur in the table
expression where CHEAP_PARTS is defined. The correlated references are from a
table specification at a higher level in the hierarchy of subqueries.

Example of using a nested table expression as the left operand of a join: The
following query contains a fullselect as the left operand of a left outer join with the
PRODUCTS table. The correlation name is PARTX.

SELECT PART, SUPPLIER, PRODNUM, PRODUCT
FROM (SELECT PART, PROD# AS PRODNUM, SUPPLIER
FROM PARTS
WHERE PROD# < '200') AS PARTX
LEFT OUTER JOIN PRODUCTS
ON PRODNUM = PROD#;

The result table looks similar to the following output:

PART SUPPLIER PRODNUM PRODUCT

WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
0IL WESTERN_CHEM 160 memmeeeee-

Because PROD# is a character field, DB2 does a character comparison to determine
the set of rows in the result. Therefore, because ‘30" is greater than 200", the row in
which PROD# is equal to "30” does not appear in the result.

Example: Using a table function as an operand of a join: You can join the results
of a user-defined table function with a table, just as you can join two tables. For
example, suppose CVTPRICE is a table function that converts the prices in the
PRODUCTS table to the currency you specify and returns the PRODUCTS table
with the prices in those units. You can obtain a table of parts, suppliers, and
product prices with the prices in your choice of currency by executing a query
similar to the following query:

SELECT PART, SUPPLIER, PARTS.PROD#, Z.PRODUCT, Z.PRICE

FROM PARTS, TABLE(CVTPRICE(:CURRENCY)) AS Z
WHERE PARTS.PROD# = Z.PROD#;

Using correlated references in table specifications in joins

You can include correlated references in nested table expressions or as arguments
to table functions. The basic rule that applies for both of these cases is that the
correlated reference must be from a table specification at a higher level in the
hierarchy of subqueries. You can also use a correlated reference and the table
specification to which it refers in the same FROM clause if the table specification
appears to the left of the correlated reference and the correlated reference is in one
of the following clauses:

* A nested table expression preceded by the keyword TABLE

¢ The argument of a table function

For more information about correlated references, see ['Using correlation names inl
[references” on page 54/

Chapter 3. Joining data from more than one table 47

A table function or a table expression that contains correlated references to other
tables in the same FROM clause cannot participate in a full outer join or a right
outer join. The following examples illustrate valid uses of correlated references in
table specifications.

Example: In this example, the correlated reference T.C2 is valid because the table
specification, to which it refers, T, is to its left.
SELECT T.C1, Z.C5

FROM T, TABLE(TF3(T.C2)) AS Z
WHERE T.C3 = Z.C4;

If you specify the join in the opposite order, with T following TABLE(TF3(T.C2),
then T.C2 is invalid.

Example: In this example, the correlated reference D.DEPTNO is valid because the
nested table expression within which it appears is preceded by TABLE and the
table specification D appears to the left of the nested table expression in the FROM
clause.
SELECT D.DEPTNO, D.DEPTNAME,
EMPINFO.AVGSAL, EMPINFO.EMPCOUNT
FROM DEPT D,
TABLE(SELECT AVG(E.SALARY) AS AVGSAL,
COUNT(*) AS EMPCOUNT
FROM EMP E
WHERE E.WORKDEPT=D.DEPTNO) AS EMPINFO;

If you remove the keyword TABLE, D.DEPTNO is invalid.

48 Application Programming and SQL Guide

Chapter 4. Using subqueries

When you need to narrow your search condition based on information in an
interim table, you can use a subquery. For example, you might want to find all
employee numbers in one table that also exist for a given project in a second table.

This chapter presents the following sections:

» [“Conceptual overview”]

* |"How to code a subquery” on page 51|

» |"Using correlated subqueries” on page 53|

Conceptual overview

Suppose that you want a list of the employee numbers, names, and commissions of
all employees working on a particular project, whose project number is MA2111.
The first part of the SELECT statement is easy to write:

SELECT EMPNO, LASTNAME, COMM

FROM DSN8810.EMP
WHERE EMPNO

But you cannot proceed because the DSN8810.EMP table does not include project
number data. You do not know which employees are working on project MA2111
without issuing another SELECT statement against the DSN8810.EMPPROJACT
table.

You can use a subquery to solve this problem. A subquery is a subselect or a
fullselect in a WHERE clause. The SELECT statement surrounding the subquery is
called the outer SELECT.
SELECT EMPNO, LASTNAME, COMM
FROM DSN8810.EMP
WHERE EMPNO IN
(SELECT EMPNO
FROM DSN8810.EMPPROJACT
WHERE PROJNO = 'MA2111');

To better understand the results of this SQL statement, imagine that DB2 goes
through the following process:

1. DB2 evaluates the subquery to obtain a list of EMPNO values:

(SELECT EMPNO
FROM DSN8810.EMPPROJACT
WHERE PROJNO = 'MA2111');

The result is in an interim result table, similar to the one shown in the following
output:

from EMPNO

2. The interim result table then serves as a list in the search condition of the outer
SELECT. Effectively, DB2 executes this statement:

© Copyright IBM Corp. 1983, 2006 49

SELECT EMPNO, LASTNAME, COMM
FROM DSN8810.EMP
WHERE EMPNO IN
('000200', '000220');

As a consequence, the result table looks similar to the following output:
EMPNO LASTNAME COMM

000200 BROWN 2217
000220 LUTZ 2387

Correlated and uncorrelated subqueries

Subqueries supply information that is needed to qualify a row (in a WHERE
clause) or a group of rows (in a HAVING clause). The subquery produces a result
table that is used to qualify the row or group of selected rows. The subquery
executes only once, if the subquery is the same for every row or group.

This kind of subquery is uncorrelated. In the previous query, for example, the
content of the subquery is the same for every row of the table DSN8810.EMP.

Subqueries that vary in content from row to row or group to group are correlated
subqueries. For information about correlated subqueries, see [“Using correlated|
lsubqueries” on page 53.|All of the following information that precedes the section
about correlated subqueries applies to both correlated and uncorrelated subqueries.

Subqueries and predicates

A subquery is always part of a predicate. The predicate is of the form:
operand operator (subquery)

The predicate can be part of a WHERE or HAVING clause. A WHERE or HAVING
clause can include predicates that contain subqueries. A predicate containing a
subquery, like any other search predicate, can be enclosed in parentheses, can be
preceded by the keyword NOT, and can be linked to other predicates through the
keywords AND and OR. For example, the WHERE clause of a query can look
something like the following clause:

WHERE X IN (subgueryl) AND (Y > SOME (subquery2) OR Z IS NULL)

Subqueries can also appear in the predicates of other subqueries. Such subqueries
are nested subqueries at some level of nesting. For example, a subquery within a
subquery within an outer SELECT has a nesting level of 2. DB2 allows nesting
down to a level of 15, but few queries require a nesting level greater than 1.

The relationship of a subquery to its outer SELECT is the same as the relationship
of a nested subquery to a subquery, and the same rules apply, except where
otherwise noted.

The subquery result table

A subquery must produce a result table that has the same number of columns as
the number of columns on the left side of the comparison operator. For example,
both of the following SELECT statements are acceptable:
SELECT EMPNO, LASTNAME

FROM DSN8810.EMP

WHERE SALARY =

(SELECT AVG(SALARY)

FROM DSN8810.EMP);

50 Application Programming and SQL Guide

SELECT EMPNO, LASTNAME
FROM DSN8810.EMP
WHERE (SALARY, BONUS) IN
(SELECT AVG(SALARY), AVG(BONUS)
FROM DSN8810.EMP);

Except for a subquery of a basic predicate, the result table can contain more than
one row. For more information, see [“Basic predicate .”|

Tables in subqueries of UPDATE, DELETE, and INSERT
statements

The following rules apply to a table that is used in a subquery for an UPDATE,
DELETE, or INSERT statement:

* When you use a subquery in an INSERT statement, the subquery can use the
same table as the INSERT statement.

* When you use a subquery in a searched UPDATE or DELETE statement (an
UPDATE or DELETE that does not use a cursor), the subquery can use the same
table as the UPDATE or DELETE statement.

* When you use a subquery in a positioned UPDATE or DELETE statement (an
UPDATE or DELETE that uses a cursor), the subquery cannot use the same table
as the UPDATE or DELETE statement.

How to code a subquery

You can specify a subquery in either a WHERE or HAVING clause by using:
* A basic predicate

* A quantified predicate: ALL, ANY, or SOME

e The IN keyword

e The EXISTS keyword

Basic predicate

You can use a subquery immediately after any of the comparison operators. If you
do, the subquery can return at most one value. DB2 compares that value with the
value to the left of the comparison operator.

Example: The following SQL statement returns the employee numbers, names, and
salaries for employees whose education level is higher than the average
company-wide education level.
SELECT EMPNO, LASTNAME, SALARY

FROM DSN8810.EMP

WHERE EDLEVEL >

(SELECT AVG(EDLEVEL)
FROM DSN8810.EMP);

Quantified predicate : ALL, ANY, or SOME

You can use a subquery after a comparison operator, followed by the keyword

ALL, ANY, or SOME. The number of columns and rows that the subquery can

return for a quantified predicate depends on the type of quantified predicate:

e For = SOME, = ANY, or <> ALL, the subquery can return one or many rows and
one or many columns. The number of columns in the result table must match
the number of columns on the left side of the operator.

* For all other quantified predicates, the subquery can return one or many rows,
but no more than one column.

Chapter 4. Using subqueries 51

If a subquery that returns one or more null values gives you unexpected results,
see the description of quantified predicates in Chapter 2 of [DB2 SQL Reference}

Using the ALL predicate

Use ALL to indicate that the operands on the left side of the comparison must
compare in the same way with all of the values that the subquery returns. For
example, suppose you use the greater-than comparison operator with ALL:

WHERE column > ALL (subquery)

To satisfy this WHERE clause, the column value must be greater than all of the
values that the subquery returns. A subquery that returns an empty result table
satisfies the predicate.

Now suppose that you use the <> operator with ALL in a WHERE clause like this:
WHERE (columnl, columnl, ... columnn) <> ALL (subquery)

To satisfy this WHERE clause, each column value must be unequal to all of the
values in the corresponding column of the result table that the subquery returns. A
subquery that returns an empty result table satisfies the predicate.

Using the ANY or SOME predicate

Use ANY or SOME to indicate that the values on the left side of the operator must
compare in the indicated way to at least one of the values that the subquery
returns. For example, suppose you use the greater-than comparison operator with
ANY:

WHERE expression > ANY (subquery)

To satisfy this WHERE clause, the value in the expression must be greater than at
least one of the values (that is, greater than the lowest value) that the subquery
returns. A subquery that returns an empty result table does not satisfy the
predicate.

Now suppose that you use the = operator with SOME in a WHERE clause like
this:
WHERE (columnl, columnl, ... columnn) = SOME (subquery)

To satisfy this WHERE clause, each column value must be equal to at least one of
the values in the corresponding column of the result table that the subquery
returns. A subquery that returns an empty result table does not satisfy the
predicate.

IN keyword

You can use IN to say that the value or values on the left side of the IN operator
must be among the values that are returned by the subquery. Using IN is
equivalent to using = ANY or = SOME.

Example: The following query returns the names of department managers:

SELECT EMPNO, LASTNAME
FROM DSN8810.EMP
WHERE EMPNO IN
(SELECT DISTINCT MGRNO
FROM DSN8810.DEPT)

52 Application Programming and SQL Guide

EXISTS keyword

In the subqueries presented thus far, DB2 evaluates the subquery and uses the
result as part of the WHERE clause of the outer SELECT. In contrast, when you
use the keyword EXISTS, DB2 simply checks whether the subquery returns one or
more rows. Returning one or more rows satisfies the condition; returning no rows
does not satisfy the condition.

Example: The search condition in the following query is satisfied if any project that
is represented in the project table has an estimated start date that is later than 1
January 2005:
SELECT EMPNO, LASTNAME
FROM DSN8810.EMP
WHERE EXISTS
(SELECT =
FROM DSN8810.PROJ
WHERE PRSTDATE > '2005-01-01');

The result of the subquery is always the same for every row that is examined for
the outer SELECT. Therefore, either every row appears in the result of the outer
SELECT or none appears. A correlated subquery is more powerful than the
uncorrelated subquery that is used in this example because the result of a
correlated subquery is evaluated for each row of the outer SELECT.

As shown in the example, you do not need to specify column names in the
subquery of an EXISTS clause. Instead, you can code SELECT *. You can also use
the EXISTS keyword with the NOT keyword in order to select rows when the data
or condition you specify does not exist; that is, you can code the following clause:

WHERE NOT EXISTS (SELECT ...);

Using correlated subqueries

In an uncorrelated subquery, DB2 executes the subquery once, substitutes the result
of the subquery in the right side of the search condition, and evaluates the outer
SELECT based on the value of the search condition. You can also write a subquery
that DB2 re-evaluates when it examines a new row (in a WHERE clause) or group
of rows (in a HAVING clause) as it executes the outer SELECT. This is called a
correlated subquery.

User-defined functions in correlated subqueries: Use care when you invoke a
user-defined function in a correlated subquery, and that user-defined function uses
a scratchpad. DB2 does not refresh the scratchpad between invocations of the
subquery. This can cause undesirable results because the scratchpad keeps values
across the invocations of the subquery.

An example of a correlated subquery

Suppose that you want a list of all the employees whose education levels are
higher than the average education levels in their respective departments. To get
this information, DB2 must search the DSN8810.EMP table. For each employee in
the table, DB2 needs to compare the employee’s education level to the average
education level for that employee’s department.

For this example, you need to use a correlated subquery, which differs from an
uncorrelated subquery. An uncorrelated subquery compares the employee’s

Chapter 4. Using subqueries 53

education level to the average of the entire company, which requires looking at the
entire table. A correlated subquery evaluates only the department that corresponds
to the particular employee.

In the subquery, you tell DB2 to compute the average education level for the
department number in the current row. A query that does this follows:
SELECT EMPNO, LASTNAME, WORKDEPT, EDLEVEL
FROM DSN8810.EMP X
WHERE EDLEVEL >
(SELECT AVG(EDLEVEL)
FROM DSN8810.EMP
WHERE WORKDEPT = X.WORKDEPT);

A correlated subquery looks like an uncorrelated one, except for the presence of
one or more correlated references. In the example, the single correlated reference is
the occurrence of X. WORKDEPT in the WHERE clause of the subselect. In this
clause, the qualifier X is the correlation name that is defined in the FROM clause of
the outer SELECT statement. X designates rows of the first instance of
DSN8810.EMP. At any time during the execution of the query, X designates the
row of DSN8810.EMP to which the WHERE clause is being applied.

Consider what happens when the subquery executes for a given row of
DSN8810.EMP. Before it executes, X WORKDEPT receives the value of the
WORKDEPT column for that row. Suppose, for example, that the row is for
Christine Haas. Her work department is A0O, which is the value of WORKDEPT
for that row. Therefore, the following is the subquery that is executed for that row:
(SELECT AVG(EDLEVEL)

FROM DSN8810.EMP
WHERE WORKDEPT = 'A00');

The subquery produces the average education level of Christine’s department. The
outer SELECT then compares this average to Christine’s own education level. For
some other row for which WORKDEPT has a different value, that value appears in
the subquery in place of A00. For example, in the row for Michael L Thompson,
this value is BO1, and the subquery for his row delivers the average education level
for department BO1.

The result table produced by the query is similar to the following output:
EMPNO LASTNAME WORKDEPT ~ EDLEVEL

000010 HASS A0O 18
000030 KWAN col 20
000070 PULASKI D21 16
000090 HENDERSON E11 16

Using correlation names in references

A correlated reference can appear in a subquery, in a nested table expression, or as
an argument of a user-defined table function. For information about correlated
references in nested table expressions and table functions, see |“Using nested tab1e|
lexpressions and user-defined table functions in joins” on page 46.In a subquery,
the reference should be of the form X.C, where X is a correlation name and C is
the name of a column in the table that X represents.

Any number of correlated references can appear in a subquery, with no restrictions
on variety. For example, you can use one correlated reference in the outer SELECT,
and another in a nested subquery.

54 Application Programming and SQL Guide

When you use a correlated reference in a subquery, the correlation name can be
defined in the outer SELECT or in any of the subqueries that contain the reference.
Suppose, for example, that a query contains subqueries A, B, and C, and that A
contains B and B contains C. The subquery C can use a correlation reference that is
defined in B, A, or the outer SELECT.

You can define a correlation name for each table name in a FROM clause. Specify
the correlation name after its table name. Leave one or more blanks between a
table name and its correlation name. You can include the word AS between the
table name and the correlation name to increase the readability of the SQL
statement.

The following example demonstrates the use of a correlated reference in the search
condition of a subquery:

SELECT EMPNO, LASTNAME, WORKDEPT, EDLEVEL
FROM DSN8810.EMP AS X
WHERE EDLEVEL >
(SELECT AVG(EDLEVEL)
FROM DSN8810.EMP
WHERE WORKDEPT = X.WORKDEPT);

The following example demonstrates the use of a correlated reference in the select
list of a subquery:
UPDATE BP1TBL T1
SET (KEY1, CHAR1, VCHARIL) =
(SELECT VALUE(T2.KEY1,T1.KEY1), VALUE(T2.CHAR1,T1.CHARI),
VALUE (T2.VCHARL,T1.VCHARL)
FROM BP2TBL T2
WHERE (T2.KEY1 = T1.KEY1))
WHERE KEY1 IN
(SELECT KEY1
FROM BP2TBL T3
WHERE KEY2 > 0);

Using correlated subqueries in an UPDATE statement

When you use a correlated subquery in an UPDATE statement, the correlation
name refers to the rows you are updating. For example, when all activities of a
project must complete before September 2004, your department considers that
project to be a priority project. You can use the following SQL statement to
evaluate the projects in the DSN8810.PROJ table, and write a 1 (a flag to indicate
PRIORITY) in the PRIORITY column (a column you have added to DSN8810.PRO]J
for this purpose) for each priority project:
UPDATE DSN8810.PROJ X
SET PRIORITY =1
WHERE DATE('2004-09-01') >

(SELECT MAX(ACENDATE)

FROM DSN8810.PROJACT
WHERE PROJNO = X.PROJNO) ;

As DB2 examines each row in the DSN8810.PRQJ table, it determines the
maximum activity end date (the ACENDATE column) for all activities of the
project (from the DSN8810.PROJACT table). If the end date of each activity
associated with the project is before September 2004, the current row in the
DSN8810.PROJ table qualifies and DB2 updates it.

Chapter 4. Using subqueries 55

Using correlated subqueries in a DELETE statement

When you use a correlated subquery in a DELETE statement, the correlation name
represents the row you delete. DB2 evaluates the correlated subquery once for each
row in the table that is named in the DELETE statement to decide whether or not
to delete the row.

Using tables with no referential constraints
Suppose that a department considers a project to be complete when the combined
amount of time currently spent on it is half a person’s time or less. The department
then deletes the rows for that project from the DSN8810.PROJ table. In the
examples in this section, PROJ and PROJACT are independent tables; that is, they
are separate tables with no referential constraints defined on them.
DELETE FROM DSN8810.PROJ X

WHERE .5 >

(SELECT SUM(ACSTAFF)

FROM DSN8810.PROJACT
WHERE PROJNO = X.PROJNO) ;

To process this statement, DB2 determines for each project (represented by a row in
the DSN8810.PROJ table) whether or not the combined staffing for that project is
less than 0.5. If it is, DB2 deletes that row from the DSN8810.PRQO] table.

To continue this example, suppose DB2 deletes a row in the DSN8810.PRO]J table.
You must also delete rows related to the deleted project in the DSN8810.PROJACT
table. To do this, use:
DELETE FROM DSN8810.PROJACT X
WHERE NOT EXISTS
(SELECT =
FROM DSN8810.PROJ
WHERE PROJNO = X.PROJNO) ;

DB2 determines, for each row in the DSN8810.PROJACT table, whether a row with
the same project number exists in the DSN8810.PROJ table. If not, DB2 deletes the
row in DSN8810.PROJACT.

Using a single table

A subquery of a searched DELETE statement (a DELETE statement that does not
use a cursor) can reference the same table from which rows are deleted. In the
following statement, which deletes the employee with the highest salary from each
department, the employee table appears in the outer DELETE and in the subselect:
DELETE FROM YEMP X

WHERE SALARY = (SELECT MAX(SALARY) FROM YEMP Y
WHERE X.WORKDEPT =Y.WORKDEPT);

This example uses a copy of the employee table for the subquery.

The following statement, without a correlated subquery, yields equivalent results:

DELETE FROM YEMP
WHERE (SALARY, WORKDEPT) IN (SELECT MAX(SALARY), WORKDEPT
FROM YEMP
GROUP BY WORKDEPT);

Using tables with referential constraints

DB?2 restricts delete operations for dependent tables that are involved in referential
constraints. If a DELETE statement has a subquery that references a table that is
involved in the deletion, the last delete rule in the path to that table must be
RESTRICT or NO ACTION if the result of the subquery is not materialized before

56 Application Programming and SQL Guide

the deletion occurs. However, if the result of the subquery is materialized before
the deletion, the delete rule can also be CASCADE or SET NULL.

Example: Without referential constraints, the following statement deletes
departments from the department table whose managers are not listed correctly in
the employee table:
DELETE FROM DSN8810.DEPT THIS
WHERE NOT DEPTNO =
(SELECT WORKDEPT
FROM DSN8810.EMP
WHERE EMPNO = THIS.MGRNO);

With the referential constraints that are defined for the sample tables, this
statement causes an error because the result table for the subquery is not
materialized before the deletion occurs. The deletion involves the table that is
referred to in the subquery (DSN8810.EMP is a dependent table of DSN8810.DEPT)
and the last delete rule in the path to EMP is SET NULL, not RESTRICT or NO
ACTION. If the statement could execute, its results would depend on the order in
which DB2 accesses the rows. Therefore, DB2 prohibits the deletion. See
[“Materialization” on page 779|for more information about materialization.

Chapter 4. Using subqueries 57

58 Application Programming and SQL Guide

Chapter 5. Using SPUFI to execute SQL from your workstation

This chapter explains how to enter and execute SQL statements at a TSO
workstation by using the SPUFI (SQL processor using file input) facility. This
chapter contains the following sections:

+ [“Allocating an input data set and using SPUFI”]
¢ [“Changing SPUFI defaults” on page 60
* |“Entering SQL statements ” on page 62

+ [“Processing SQL statements ” on page 64|

* [“When SQL statements exceed resource limit thresholds” on page 65|

» [“Browsing the output ” on page 66|

You can execute most of the interactive SQL examples shown in [Part 1, “Using SQL|
lqueries,” on page 1 by following the instructions provided in this chapter and
using the sample tables shown in [Appendix A, “DB2 sample tables,” on page 915
The instructions assume that ISPF is available to you.

You can use the TSO PROFILE command to control whether message IDs are
displayed. To view message IDs, use TSO PROFILE MSGID on the ISPF command
line. To suppress message IDs, use TSO PROFILE NOMSGID.

Allocating an input data set and using SPUFI

Before you use SPUFI, you should allocate an input data set, if one does not
already exist. This data set will contain one or more SQL statements that you want
to execute. For information on ISPF and allocating data sets, see z/OS ISPF User’s
Guide Volumes 1 and 2.

To use SPUFI, select SPUFI from the DB2I Primary Option Menu as shown in
[Figure 151 on page 503|

The SPUFI panel then displays as shown in [Figure 3 on page 60}

From then on, when the SPUFI panel displays, the data entry fields on the panel
contain the values that you previously entered. You can specify data set names and
processing options each time the SPUFI panel displays, as needed. Values that you
do not change remain in effect.

© Copyright IBM Corp. 1983, 2006 59

H H HF I

4 N
DSNESPO1 SPUFI SSID: DSN
===>
Enter the input data set name: (Can be sequential or partitioned)
1 DATA SET NAME..... ===> EXAMPLES (XMP1)
2 VOLUME SERIAL..... ===> (Enter if not cataloged)
3 DATA SET PASSWORD. ===> (Enter if password protected)
Enter the output data set name: (Must be a sequential data set)
4 DATA SET NAME..... ===> RESULT
Specify processing options:
5 CHANGE DEFAULTS... ===>Y (Y/N - Display SPUFI defaults panel?)
6 EDIT INPUT........ ===> Y (Y/N - Enter SQL statements?)
7 EXECUTE.....ounnn. ===> Y (Y/N - Execute SQL statements?)
8 AUTOCOMMIT........ ===>Y (Y/N - Commit after successful run?)
9 BROWSE OUTPUT..... ===> Y (Y/N - Browse output data set?)
For remote SQL processing:
10 CONNECT LOCATION ===>
\\PRESS: ENTER to process END to exit HELP for more information)

Figure 3. The SPUFI panel filled in

Fill out the SPUFI panel. You can access descriptions for each of the fields in the
panel in the DB2I help system. See ['DB2I help” on page 502| for more information
about the DB2I help system.

Important: Ensure that the TSO terminal CCSID matches the DB2 CCSID. If these
CCSIDs do not match, data corruption can occur. If SPUFI issues the warning
message DSNE345], terminate your SPUFI session and notify the system
administrator.

Changing SPUFI defaults

When you finish with the SPUFI panel, press the ENTER key. If you specified YES
on line 5 of the SPUFI panel, the next panel you see is the SPUFI Defaults panel.
SPUFI provides default values the first time you use SPUF], for all options except
the DB2 subsystem name. Any changes that you make to these values remain in
effect until you change the values again. [Figure 4 on page 61| shows the initial
default values.

60 Application Programming and SQL Guide

Vs
DSNESPO2 CURRENT SPUFI DEFAULTS SSID: DSN
===>
Enter the following to control your SPUFI session:

1 SQL TERMINATOR ===> (SQL Statement Terminator)
2 ISOLATION LEVEL ===> RR (RR=Repeatable Read, CS=Cursor Stability)
3 MAX SELECT LINES ===> 250 (Maximum lines to be returned from a SELECT)
4 ALLOW SQL WARNINGS===> NO (Continue fetching after SQL warning)
5 CHANGE PLAN NAMES ===> NO (Change the plan names used by SPUFI)
Qutput data set characteristics:
6 RECORD LENGTH ... ===> 4092 (LRECL= logical record Tength)

7 BLOCKSIZE (Size of one block)
8 RECORD FORMAT.... (RECFM= F, FB, FBA, V, VB, or VB)
9 DEVICE TYPE...... (Must be a DASD unit name)

Qutput format characteristics:

10 MAX NUMERIC FIELD ===> 33 (Maximum width for numeric field)
11 MAX CHAR FIELD .. ===> 80 (Maximum width for character field)
12 COLUMN HEADING .. ===> NAMES (NAMES, LABELS, ANY, or BOTH)

\PRESS: ENTER to process END to exit HELP for more information

Figure 4. The SPUFI defaults panel

If you want to change the current default values, specify new values in the fields
[of the panel. All fields must contain a value. The DB2I help system contains
[detailed descriptions of each of the fields of the CURRENT SPUFI DEFAULTS
I panel.

When you have entered your SPUFI options, press the ENTER key to continue.
SPUFI then processes the next processing option for which you specified YES. If all
other processing options are NO, SPUFI displays the SPUFI panel.

If you press the END key, you return to the SPUFI panel, but you lose all the
changes you made on the SPUFI Defaults panel. If you press ENTER, SPUFI saves
your changes.

Changing SPUFI defaults - panel 2

#

If you specify YES on line 5 of the SPUFI Defaults panel, the next panel that you
see is the second SPUFI Defaults panel{Figure 5 on page 62|shows the initial
#
#

default values.

Chapter 5. Using SPUFI to execute SQL from your workstation 61

HoH H O H H H HH O HFHH OHHFH OHHHHFHHFHFEHFHFHEHFFFFFFE ST

s
DSNESPO7 CURRENT SPUFI DEFAULTS - PANEL 2 SSID: DSN
===>
DO NOT CHANGE THE FIELDS BELOW UNLESS DIRECTED BY THE DB2 SYSTEM ADMINISTRATOR
Change plans to be used by your SPUFI session:

1 CS ISOLATION PLAN ===> DSNESPC (Name of plan for CS isolation level)
2 RR ISOLATION PLAN ===> DSNESPC (Name of plan for RR isolation level)

Indicate warning message status:
3 BLANK CCSID WARNING ===> YES (Show warning if terminal CCSID is blank)

\PRESS: ENTER to process END to exit HELP for more information

Figure 5. CURRENT SPUFI DEFAULTS - PANEL 2

Specify values for the following options on the CURRENT SPUFI DEFAULTS -
PANEL 2 panel. All fields must contain a value. Using an invalid or incorrect plan
name might cause SPUFI to experience operational errors or it might cause data
contamination.

1 CS ISOLATION PLAN
Specify the name of the plan that SPUFI uses when you specify an
isolation level of cursor stability (CS). By default, this name is DSNESPCS.

2 RR ISOLATION PLAN
Specify the name of the plan that SPUFI uses when you specify an
isolation level of repeatable read (RR). By default, this name is DSNESPRR.

3 BLANK CCSID ALERT
Indicate whether to receive message DSNE345] when the terminal CCSID
setting is blank. A blank terminal CCSID setting occurs when the terminal

code page and character set cannot be queried or if they are not supported
by ISPF.

Recommendation: To avoid possible data contamination use the default
setting of YES, unless you are specifically directed by your DB2 system
administrator to use NO.

Entering SQL statements

Next, SPUFI lets you edit the input data set. Initially, editing consists of entering
an SQL statement into the input data set. You can also edit an input data set that
contains SQL statements and you can change, delete, or insert SQL statements.

Using the ISPF editor
The ISPF Editor shows you an empty EDIT panel.

On the panel, use the ISPF EDIT program to enter SQL statements that you want
to execute, as shown in |Figure 6 on page 63|

62 Application Programming and SQL Guide

H H H HF

¥

Move the cursor to the first input line and enter the first part of an SQL statement.
You can enter the rest of the SQL statement on subsequent lines, as shown in
Indenting your lines and entering your statements on several lines make
your statements easier to read, without changing how your statements process.

You can put more than one SQL statement in the input data set. You can put an
SQL statement on one line of the input data set or on more than one line. DB2
executes the statements in the order you placed them in the data set. Do not put
more than one SQL statement on a single line. The first one executes, but DB2
ignores the other SQL statements on the same line.

In your SPUFI input data set, end each SQL statement with the statement
terminator that you specified in the CURRENT SPUFI DEFAULTS panel.

When you have entered your SQL statements, press the END PF key to save the
file and to execute the SQL statements.

/EDIT ———————— userid.EXAMPLES (XMP1) =--==--commcmmmemmmem COLUMNS 001 072
COMMAND INPUT ===> SAVE SCROLL ===> PAGE

TOP OF DATA
000100 SELECT LASTNAME, FIRSTNME, PHONENO
000200 FROM DSN8810.EMP

000300 WHERE WORKDEPT= 'D11'

000400 ORDER BY LASTNAME;

BOTTOM OF DATA
A J

Figure 6. The edit panel: After entering an SQL statement

Pressing the END PF key saves the data set. You can save the data set and continue
editing it by entering the SAVE command. Saving the data set after every 10
minutes or so of editing is recommended.

shows what the panel looks like if you enter the sample SQL statement,
followed by a SAVE command.

You can bypass the editing step by resetting the EDIT INPUT processing option:
EDIT INPUT ... ===> NO

Retrieving Unicode UTF-16 graphic data

SPUFI can be used to retrieve Unicode UTF-16 graphic data. However, SPUFI
might not be able to display some characters, if those characters have no mapping
in the target SBCS EBCDIC CCSID.

Entering comments

You can put comments about SQL statements either on separate lines or on the
same line. In either case, use two hyphens (--) to begin a comment. Specify any
text other than #SET TERMINATOR or #SET TOLWARN after the comment. DB2
ignores everything to the right of the two hyphens.

Setting the SQL terminator character

Use the text --#SET TERMINATOR character in a SPUFI input data set as an
instruction to SPUFI to interpret character as a statement terminator. A semicolon (;)
is the default SQL terminator. You can specify any single-byte character except one
of the characters that are listed in [Table 3 on page 64 The terminator that you
specify overrides a terminator that you specified in option 1 of the CURRENT

Chapter 5. Using SPUFI to execute SQL from your workstation 63

H oH H H H H H H O H H FH

H O HFHHHF OH H*

SPUFI DEFAULTS panel or in a previous --#SET TERMINATOR statement.

Table 3. Invalid special characters for the SQL terminator

Hexadecimal
Name Character representation
blank X'40'
comma , X'5E'
double quote ! X'7F'
left parenthesis (X'4D'
right parenthesis) X'5D'
single quote ’ X7D'
underscore X'6D'

Use a character other than a semicolon if you plan to execute a statement that
contains embedded semicolons. For example, suppose you choose the character #
as the statement terminator. Then a CREATE TRIGGER statement with embedded
semicolons looks like this:
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END#

Be careful to choose a character for the SQL terminator that is not used within the
statement.

Controlling toleration of warnings

When you use SPUF], you can control the toleration of warnings with the control
statement TOLWARN:

--#SET TOLWARN NO
If a warning occurs when SPUFI executes an OPEN or FETCH for SELECT
statement, SPUFI stops processing the SELECT statement. If SQLCODE
+802 occurs when SPUFI executes a FETCH for a SELECT statement,
SPUFI continues to process the SELECT statement.

--#SET TOLWARN YES
If a warning occurs when SPUFI executes an OPEN or FETCH for SELECT
statement, SPUFI continues to process the SELECT statement.

Example: The following example activates and then deactivates toleration of SQL
warnings:

SELECT * FROM MY.T1;

--#SET TOLWARN YES

SELECT * FROM YOUR.T1;
--#SET TOLWARN NO

Processing SQL statements

SPUFI passes the input data set to DB2 for processing. DB2 executes the SQL
statement in the input data set EXAMPLES(XMP1), and sends the output to the
output data set userid. RESULT.

64 Application Programming and SQL Guide

You can bypass the DB2 processing step by resetting the EXECUTE processing
option:
EXECUTE ===> N0

Your SQL statement might take a long time to execute, depending on how large a
table DB2 must search, or on how many rows DB2 must process. To interrupt
DB2’s processing, press the PA1 key and respond to the prompting message that
asks you if you really want to stop processing. This cancels the executing SQL
statement and returns you to the ISPF-PDF menu.

What happens to the output data set? This depends on how much of the input
data set DB2 was able to process before you interrupted its processing. DB2 might
not have opened the output data set yet, or the output data set might contain all or
part of the results data that are produced so far.

When SQL statements exceed resource limit thresholds

Your system administrator might use the DB2 resource limit facility (governor) to
set time limits for processing SQL statements in SPUFL Those limits can be error
limits or warning limits.

If you execute an SQL statement through SPUFI that runs longer than the error
time limit for predictive or reactive governing, SPUFI terminates processing of that
SQL statement and all statements that follow in the SPUFI input data set.

However, SPUFI displays a panel that lets you commit or roll back the previously
uncommitted changes that you have made. That panel is shown in

e N\
DSNESPO4 SQL STATEMENT RESOURCE LIMIT EXCEEDED SSID: DSN
===>
The following SQL statement has encountered an SQLCODE of -905 or -495:
Statement text
Your SQL statement has exceeded the resource utilization threshold set
by your site administrator.
You must ROLLBACK or COMMIT all the changes made since the last COMMIT.
SPUFI processing for the current input file will terminate immediately
after the COMMIT or ROLLBACK is executed.
1 NEXT ACTION ===> (Enter COMMIT or ROLLBACK)
PRESS: ENTER to process HELP for more information)

Figure 7. The resource limit facility error panel

If you execute an SQL statement through SPUFI that runs longer than the warning
time limit for predictive governing, SPUFI displays a panel that lets you tell DB2
to continue executing that statement, or stop processing that statement and
continue to the next statement in the SPUFI input data set. That panel is shown in

ieure 8 on page 6
o) pag

Chapter 5. Using SPUFI to execute SQL from your workstation 65

e
DSNESPO5 SQL STATEMENT RESOURCE LIMIT EXCEEDED SSID: DSN

===>
The following SQL statement has encountered an SQLCODE of 495:

Statement text

You can now either CONTINUE executing this statement or BYPASS the execution
of this statement. SPUFI processing for the current input file will continue
after the CONTINUE or BYPASS processing is completed.

1 NEXT ACTION ===> (Enter CONTINUE or BYPASS)

PRESS: ENTER to process HELP for more information

Figure 8. The resource limit facility warning panel

For information on the DB2 governor and how to set error and warning time
limits, see Part 5 (Volume 2) of [DB2 Administration Guidd

Browsing the output

SPUFI formats and displays the output data set using the ISPF Browse program.
[Figure 9 on page 67 shows the output from the sample program. An output data
set contains these items for each SQL statement that DB2 executes:

* The executed SQL statement, copied from the input data set

* The results of executing the SQL statement

e The formatted SQLCA, if an error occurs during statement execution

At the end of the data set are summary statistics that describe the processing of the
input data set as a whole.

For SELECT statements executed with SPUFI, the message “SQLCODE IS 100”
indicates an error-free result. If the message SQLCODE IS 100 is the only result,

DB2 is unable to find any rows that satisfy the condition specified in the statement.

For all other types of SQL statements executed with SPUFI, the message
“SQLCODE IS 0” indicates an error-free result.

66 Application Programming and SQL Guide

.

BROWSE-- userid.RESULT COLUMNS 001 072 h
COMMAND INPUT ===> SCROLL ===> PAGE
........ VYV | NI VPV NV YV MUV V| NV V| SV | SV
SELECT LASTNAME, FIRSTNME, PHONENO 00010000
FROM DSN8810.EMP 00020000
WHERE WORKDEPT = 'DI1' 00030000
ORDER BY LASTNAME; 00040000

_________ SRV MRV VRPEE SV MRV VEOEEVE, NSRRIV NSRS | SOV | SRRV,

LASTNAME FIRSTNME PHONENO

ADAMSON BRUCE 4510

BROWN DAVID 4501

JOHN REBA 0672

JONES WILLIAM 0942

LUTZ JENNIFER 0672

PIANKA ELIZABETH 3782

SCOUTTEN MARILYN 1682

STERN IRVING 6423

WALKER JAMES 2986

YAMAMOTO KIYOSHI 2890

YOSHIMURA MASATOSHI 2890

DSNE610I NUMBER OF ROWS DISPLAYED IS 11

DSNE6161 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

Comooaoo T moooooe S coooooe S coconoee A cocoooeo o onoos oo

Comooaoos e mooooooe S oooooooe S cooooooe A mocooooo Ao onoon oo

DSNE6171 COMMIT PERFORMED, SQLCODE IS 0

DSNE6161 STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0

coooccoos Troccoooooe Sroccoooooe Soccoooooe Poccooooos P oo

DSNE6O1I SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72

DSNE620I NUMBER OF SQL STATEMENTS PROCESSED IS 1

DSNE6211 NUMBER OF INPUT RECORDS READ IS 4

DSNE6221 NUMBER OF OUTPUT RECORDS WRITTEN IS 30)

Figure 9. Result data set from the sample problem

Format of SELECT statement results
The results of SELECT statements follow these rules:

If a column’s numeric or character data cannot display completely:

— Character values that are too wide truncate on the right.

— Numeric values that are too wide display as asterisks (*).

— For columns other than LOB columns, if truncation occurs, the output data
set contains a warning message. Because LOB columns are generally longer
than the value you choose for field MAX CHAR FIELD on panel CURRENT
SPUFI DEFAULTS, SPUFI displays no warning message when it truncates
LOB column output.

You can change the amount of data displayed for numeric and character
columns by changing values on the CURRENT SPUFI DEFAULTS panel, as
described in [“Changing SPUFI defaults” on page 60

A null value displays as a series of hyphens (-).
A ROWID or BLOB column value displays in hexadecimal.
A CLOB column value displays in the same way as a VARCHAR column value.

A DBCLOB column value displays in the same way as a VARGRAPHIC column
value.

A heading identifies each selected column, and repeats at the top of each output
page. The contents of the heading depend on the value you specified in field
COLUMN HEADING of the CURRENT SPUFI DEFAULTS panel.

Chapter 5. Using SPUFI to execute SQL from your workstation ~ 67

Content of the messages
Each message contains the following:
¢ The SQLCODE, if the statement executes successfully
* The formatted SQLCA, if the statement executes unsuccessfully

* What character positions of the input data set that SPUFI scanned to find SQL
statements. This information helps you check the assumptions SPUFI made
about the location of line numbers (if any) in your input data set.

* Some overall statistics:
— Number of SQL statements processed
— Number of input records read (from the input data set)
— Number of output records written (to the output data set).

Other messages that you could receive from the processing of SQL statements
include:

¢ The number of rows that DB2 processed, that either:
Your SELECT statement retrieved

Your UPDATE statement modified

Your INSERT statement added to a table

Your DELETE statement deleted from a table

* Which columns display truncated data because the data was too wide

68 Application Programming and SQL Guide

Part 2. Coding SQL in your host application program

Chapter 6. Basics of coding SQL in an application program.73
Conventions used in examples of coding SQL statements .74
Delimiting an SQL statement .. .74
Declaring table and view definitions . . . g
Accessing data using host variables, variable arrays and structures e e T
Using host variables . . . ()
Retrieving a single row of data mto host varlables e e T
Updating data using values in host variables .78
Inserting data from column values that use host variables.79
Using indicator variables with host variables .79
Assignments and comparisons using different data types81
Changing the coded character set ID of host variables81
Using host variable arrays . . A - 4
Retrieving multiple rows of data 1nto host Varlable arrays)
Inserting multiple rows of data from host variable arrays83
Using indicator variable arrays with host variable arrays83
Using host structures . . . -
Retrieving a single row of data 1nto a host structure -
Using indicator variables with host structures .86
Checking the execution of SQL statements .8
Using the SQL communication area (SQLCA) .8
SQLCODE and SQLSTATE .88
The WHENEVER statement .88
Handling arithmetic or conversion errors .8
The GET DIAGNOSTICS statement .9
Retrieving statement and condition items .9

Data types for GET DIAGNOSTICS items .9
Calling DSNTIAR to display SQLCA fields. .9%
Defining a message outputarea .9
Possible return codes from DSNTIAR. .9%
Preparing to use DSNTIAR .. .%

A scenario for using DSNTIAR. .9%
Chapter 7. Using a cursor to retrieve a setofrows .9
Accessing data by using a row-positioned cursor. .9
Step 1: Declare the cursor. .. s
Step 2: Open the cursor . . . e (]
Step 3: Specify what to do at end- of data [
Step 4: Execute SQL statements .102
Using FETCH statements . . . e (0
Using positioned UPDATE statements e 0]
Using positioned DELETE statements .103

Step 5: Close the cursor . . . e (0
Accessing data by using a rowset—posmoned cursor 104
Step 1: Declare the rowset cursor. .104
Step 2: Open the rowset cursor . . e 0
Step 3: Specify what to do at end-of- data for a rowset cursor105
Step 4: Execute SQL statements with a rowset cursor . . . e (0)¢}
Using a multiple-row FETCH statement with host variable arrays e (03]
Using a multiple-row FETCH statement with a descriptor105
Using rowset-positioned UPDATE statements .107
Using rowset-positioned DELETE statements. .108
Number of rows inarowset .10

Step 5: Close the rowset cursor .. .10
Types of cursors . . . e (0]
Scrollable and non—scrollable CUISOIS 109

© Copyright IBM Corp. 1983, 2006 69

Using a non-scrollable cursor .
Using a scrollable cursor. .
Comparison of scrollable cursors .
Holes in the result table of a scrollable cursor
Held and non-held cursors .
Examples of using cursors .

Chapter 8. Generating declarations for your tables using DCLGEN .
Invoking DCLGEN through DB2I e
Including the data declarations in your program
DCLGEN support of C, COBOL, and PL/I languages .
Example: Adding a table declaration and host-variable structure to a 11brary
Step 1. Specify COBOL as the host language . .
Step 2. Create the table declaration and host structure.
Step 3. Examine the results .

Chapter 9. Embedding SQL statements in host languages .
Coding SQL statements in an assembler application .
Defining the SQL communications area.
If you specify STDSQL(YES)
If you specify STDSQL(NO)
Defining SQL descriptor areas .
Embedding SQL statements
Using host variables .
Declaring host variables .
Determining equivalent SQL and assembler data types
Notes on assembler variable declaration and usage. .
Determining compatibility of SQL and assembler data types.
Using indicator variables . e
Handling SQL error return codes.
Macros for assembler applications .
Coding SQL statements in a C or C++ apphcatlon .
Defining the SQL communication area .
If you specify STDSQL(YES)
If you specify STDSQL(NO)
Defining SQL descriptor areas .
Embedding SQL statements
Using host variables and host Varlable arrays
Declaring host variables .
Declaring host variable arrays .
Using host structures.
Determining equivalent SQL and C data types
Notes on C variable declaration and usage
Notes on syntax differences for constants . .
Determining compatibility of SQL and C data types
Using indicator variables and indicator variable arrays
Handling SQL error return codes.
Coding considerations for C and C++ .
Coding SQL statements in a COBOL application.
Defining the SQL communication area .
If you specify STDSQL(YES)
If you specify STDSQL(NO)
Defining SQL descriptor areas .
Embedding SQL statements
Using host variables and host Varlable arrays
Declaring host variables .
Declaring host variable arrays .
Using host structures . .
Determining equivalent SQL and COBOL data types .
Notes on COBOL variable declaration and usage
Determining compatibility of SQL and COBOL data types

70 Application Programming and SQL Guide

. 109
. 110
. 114
. 115
. 118
. 120

. 127
. 128
. 128
. 129
. 130
. 130
. 131
. 132

. 135
. 135
. 135
. 136
. 136
. 136
. 137
. 139
. 139
. 142
. 145
. 146
. 147
. 148
. 149
. 149
. 149
. 150
. 150
. 150
. 151
. 152
. 153
. 159
. 164
. 166
. 170
. 171
. 172
. 173
. 175
. 177
. 177
. 177
. 177
. 177
. 178
. 178
. 182
. 183
. 190
. 196
. 201
. 203
. 205

Using indicator variables and indicator variable arrays . 207
Handling SQL error return codes. . Lo . 208
Coding considerations for object-oriented extens10ns in COBOL e oo 210
Coding SQL statements in a Fortran application . .21
Defining the SQL communication area . . 211

If you specify STDSQL(YES) . 211

If you specify STDSQL(NO) . 211
Defining SQL descriptor areas . .21
Embedding SQL statements . 212
Using host variables . . 214
Declaring host variables . . . 214
Determining equivalent SQL and Fortran data types . 216
Notes on Fortran variable declaration and usage . 217
Notes on syntax differences for constants . . 218
Determining compatibility of SQL and Fortran data types . 218
Using indicator variables e . 219
Handling SQL error return codes. . 220
Coding SQL statements in a PL/I apphcat1on . 221
Defining the SQL communication area . . 221

If you specify STDSQL(YES) . 221

If you specify STDSQL(NO) . 221
Defining SQL descriptor areas . . 221
Embedding SQL statements . . 222
Using host variables and host variable arrays . 224
Declaring host variables . . 225
Declaring host variable arrays . . 228
Using host structures . . . 231
Determining equivalent SQL and PL / I data types . . 232
Notes on PL/I variable declaration and usage . 235
Determining compatibility of SQL and PL/I data types . 236
Using indicator variables and indicator variable arrays . 237
Handling SQL error return codes. . 238
Coding SQL statements in a REXX apphcat1on . 240
Defining the SQL communication area . . 240
Defining SQL descriptor areas . . .y |
Accessing the DB2 REXX Language Support app11cat1on programmmg mterfaces 2 |
Embedding SQL statements in a REXX procedure . o . 243
Using cursors and statement names . . . 244
Using REXX host variables and data types . . 245
Determining equivalent SQL and REXX data types . 245
Letting DB2 determine the input data type . . 245
Ensuring that DB2 correctly interprets character 1nput data . . 246
Passing the data type of an input variable to DB2 . . 247
Retrieving data from DB2 tables . . 247
Using indicator variables . S48
Setting the isolation level of SQL Statements in a REXX procedure. .2)
Chapter 10. Using constraints to maintain data integrity . . 251
Using check constraints . . . 251
Check constraint con51derat10ns . . 251
When check constraints are enforced . . 252
How check constraints set CHECK-pending status . . 252
Using referential constraints e . 253
Parent key columns . . . 253
Defining a parent key and a umque mdex . 254
Incomplete definition. . . 255
Recommendations for defmmg prlmary keys . . 255
Defining a foreign key . 256
The relationship name . 256
Indexes on foreign keys 256

The FOREIGN KEY clause in ALTER TABLE . . 257

Part 2. Coding SQL in your host application program 71

Restrictions on cycles of dependent tables .
Maintaining referential integrity when using data encryptlon .
Referential constraints on tables with multilevel security with row-level granulanty
Using informational referential constraints.

Chapter 11. Using DB2-generated values as keys
Using ROWID columns as keys .
Defining a ROWID column.
Direct row access .
Using identity columns as keys
Defining an identity column
Parent keys and foreign keys . .
Using values obtained from sequence ob]ects as keys .
Creating a sequence object .
Referencing a sequence object .
Keys across multiple tables .

Chapter 12. Using triggers for active data .
Example of creating and using a trigger
Parts of a trigger

Trigger name

Subject table.

Trigger activation time

Triggering event

Granularity .

Transition variables

Transition tables

Triggered action

Trigger condition .
Trigger body .

Invoking stored procedures and user—defmed functlons from trlggers
Passing transition tables to user-defined functions and stored procedures
Trigger cascading . .
Ordering of multiple trlggers . .
Interactions between triggers and referentlal constramts .
Interactions between triggers and tables that have multilevel securlty w1th row- level granularlty
Creating triggers to obtain consistent results .

72 Application Programming and SQL Guide

. 257
. 258
. 258
. 259

. 261
. 261
. 261
. 262
. 262
. 263
. 264
. 265
. 265
. 266
. 266

. 269
. 269
. 271
. 271
. 271
. 271
. 271
. 272
. 273
. 274
. 275
. 275
. 275
. 277
. 278
. 278
. 279
. 280
. 281
. 282

Chapter 6. Basics of coding SQL in an application program

Suppose you are writing an application program to access data in a DB2 database.
When your program executes an SQL statement, the program needs to
communicate with DB2. When DB2 finishes processing an SQL statement, DB2
sends back a return code, and your program should test the return code to
examine the results of the operation.

To communicate with DB2, you need to perform the following actions:

* Choose a method for communicating with DB2. You can use one of the
following methods:
— Static SQL
— Embedded dynamic SQL
— Open Database Connectivity (ODBC)
— JDBC application support
- SQLJ application support

This book discusses embedded SQL. See [Chapter 24, “Coding dynamic SQL in|
[application programs,” on page 539 for a comparison of static and embedded
dynamic SQL and an extended discussion of embedded dynamic SQL.

ODBC lets you access data through ODBC function calls in your application.
You execute SQL statements by passing them to DB2 through a ODBC function
call. ODBC eliminates the need for precompiling and binding your application
and increases the portability of your application by using the ODBC interface.

If you are writing your applications in Java', you can use JDBC application
support to access DB2. JDBC is similar to ODBC but is designed specifically for
use with Java. In addition to using JDBC, you can use SQL]J application support
to access DB2. SQL] is designed to simplify the coding of DB2 calls for Java
applications. For more information about using both JDBC and SQL], see
[Application Programming Guide and Reference for Javal

. %ﬁmit SQL statements, as described in [“Delimiting an SQL statement” on page|

* Declare the tables that you use, as described in [‘Declaring table and view|
[definitions” on page 75](This is optional.)

* Declare the data items for passing data between DB2 and a host language,
according to the host language rules described in|Chapter 9, “Embedding SQL]
[statements in host languages,” on page 135/

+ Code SQL statements to access DB2 data. See [“Accessing data using host
[variables, variable arrays, and structures” on page 75.|

For information about using the SQL language, see [Part 1, “Using SQL queries,”|
[on page 1|and [DB2 SQL Reference| Details about how to use SQL statements
within application programs are described in Khapter 9, “Embedding SQL|
[statements in host languages,” on page 135)

* Declare an SQL communications area (SQLCA). Alternatively, you can use the
GET DIAGNOSTICS statement to provide diagnostic information about the last

SQL statement that executed. See [‘Checking the execution of SQL statements”]
for more information.

In addition to these basic requirements, you should also consider the following
special topics:

© Copyright IBM Corp. 1983, 2006 73

 Cursors — |Chapter 7, “Using a cursor to retrieve a set of rows,” on page 99
discusses how to use a cursor in your application program to select a set of rows
and then process the set either one row at a time or one rowset at a time.

« DCLGEN — [Chapter 8, “Generating declarations for your tables using|
[DCLGEN,” on page 127 discusses how to use DB2’s declarations generator,
DCLGEN, to obtain accurate SQL DECLARE statements for tables and views.

This section includes information about using SQL in application programs written
in assembler, C, C++, COBOL, Fortran, PL/I, and REXX.

Conventions used in examples of coding SQL statements

The SQL statements shown in this section use the following conventions:

* The SQL statement is part of a C or COBOL application program. Each SQL
example is displayed on several lines, with each clause of the statement on a
separate line.

* The use of the precompiler options APOST and APOSTSQL are assumed
(although they are not the defaults). Therefore, apostrophes (') are used to
delimit character string literals within SQL and host language statements.

* The SQL statements access data in the sample tables provided with DB2. The
tables contain data that a manufacturing company might keep about its
employees and its current projects. For a description of the tables, see
[Appendix A, “DB2 sample tables,” on page 915)

* An SQL example does not necessarily show the complete syntax of an SQL
statement. For the complete description and syntax of any of the statements
described in this book, see Chapter 5 of [DB2 SQL Referencel

* Examples do not take referential constraints into account. For more information
about how referential constraints affect SQL statements, and examples of how
SQL statements operate with referential constraints, see [Chapter 2, “Working]
with tables and modifying data,” on page 19| and [“Using referential constraints”|

on page 253.|

Some of the examples vary from these conventions. Exceptions are noted where
they occur.

Delimiting an SQL statement

For languages other than REXX, delimit an SQL statement in your program with
the beginning keyword EXEC SQL and a statement terminator. The terminators for
the languages that are described in this book are the following;:

Language SQL Statement Terminator

Assembler End of line or end of last continued line
C and C++ Semicolon (;)

COBOL END-EXEC.

Fortran End of line or end of last continued line
PL/T Semicolon (;)

For REXX, precede the statement with EXECSQL. If the statement is in a literal
string, enclose it in single or double quotation marks.

74 Application Programming and SQL Guide

Example: Use EXEC SQL and END-EXEC. to delimit an SQL statement in a COBOL
program:
EXEC SQL

an SQL statement
END-EXEC.

Declaring table and view definitions

Before your program issues SQL statements that select, insert, update, or delete
data, you should declare the tables and views that your program accesses. To do
this, include an SQL DECLARE statement in your program.

You do not need to declare tables or views, but doing so offers advantages. One
advantage is documentation. For example, the DECLARE statement specifies the
structure of the table or view you are working with, and the data type of each
column. You can refer to the DECLARE statement for the column names and data
types in the table or view. Another advantage is that the DB2 precompiler uses
your declarations to make sure that you have used correct column names and data
types in your SQL statements. The DB2 precompiler issues a warning message
when the column names and data types do not correspond to the SQL DECLARE
statements in your program.

One way to declare a table or view is to code a DECLARE statement in the
WORKING-STORAGE SECTION or LINKAGE SECTION within the DATA
DIVISION of your COBOL program. Specify the name of the table and list each
column and its data type. When you declare a table or view, you specify
DECLARE table-name TABLE regardless of whether the table-name refers to a table
or a view.

For example, the DECLARE TABLE statement for the DSN8810.DEPT table looks
like the following DECLARE statement in COBOL.:

EXEC SQL

DECLARE DSN8810.DEPT TABLE
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16))

END-EXEC.

As an alternative to coding the DECLARE statement yourself, you can use
DCLGEN, the declarations generator that is supplied with DB2. For more
information about using DCLGEN, see [Chapter 8, “Generating declarations for]
lyour tables using DCLGEN,” on page 127

When you declare a table or view that contains a column with a distinct type,
declare that column with the source type of the distinct type, rather than with the
distinct type itself. When you declare the column with the source type, DB2 can
check embedded SQL statements that reference that column at precompile time.

Accessing data using host variables, variable arrays, and structures

You can access data by using host variables, host variable arrays, and host
structures within the SQL statements that you use in your application program.

A host variable is a data item that is declared in the host language for use within an
SQL statement. Using host variables, you can:

Chapter 6. Basics of coding SQL in an application program 75

Using

* Retrieve data into the host variable for your application program’s use

* Place data into the host variable to insert into a table or to change the contents
of a row

* Use the data in the host variable when evaluating a WHERE or HAVING clause

* Assign the value that is in the host variable to a special register, such as
CURRENT SQLID and CURRENT DEGREE

¢ Insert null values in columns using a host indicator variable that contains a
negative value

* Use the data in the host variable in statements that process dynamic SQL, such
as EXECUTE, PREPARE, and OPEN

A host variable array is a data array that is declared in the host language for use
within an SQL statement. Using host variable arrays, you can:

* Retrieve data into host variable arrays for your application program’s use

* Place data into host variable arrays to insert rows into a table

A host structure is a group of host variables that is referred to by a single name.
You can use host structures in all host languages except REXX. Host structures are
defined by statements of the host language. You can refer to a host structure in any
context where you would refer to the list of host variables in the structure. A host
structure reference is equivalent to a reference to each of the host variables within
the structure in the order in which they are defined in the structure declaration.

This section describes:

+ |[“Using host variables "]
+ |“Using host variable arrays ” on page 82|
* |“Using host structures ” on page 86

host variables

To use a host variable in an SQL statement, you can specify any valid host variable
name that is declared according to the rules of the host language, as described in
[Chapter 9, “Embedding SQL statements in host languages,” on page 135|You must
declare the name of the host variable in the host program before you use it.

To optimize performance, make sure that the host language declaration maps as
closely as possible to the data type of the associated data in the database. For more

performance suggestions, see [Part 6, “Additional programming techniques,” on|
page 531.

You can use a host variable to represent a data value, but you cannot use it to
represent a table, view, or column name. (You can specify table, view, or column
names at run time using dynamic SQL. See [Chapter 24, “Coding dynamic SQL in|
|application programs,” on page 539| for more information.)

Host variables follow the naming conventions of the host language. A colon (:)
must precede host variables that are used in SQL statements so DB2 can
distinguish a variable name from a column name. A colon must not precede host
variables outside of SQL statements.

For more information about declaring host variables, see the appropriate language
section:

e Assembler: |”Declaring host variables” on page 139|

* C and C++:|"Declaring host variables” on page 153

+ COBOL:|“Declaring host variables” on page 183]

76 Application Programming and SQL Guide

e Fortran:|[Declaring host variables” on page 214]
 PL/I: ["Declaring host variables” on page 225|
« REXX:|“Using REXX host variables and data types” on page 245,

This section describes the following ways to use host variables:

« [“Retrieving a single row of data into host variables”]

« [“Updating data using values in host variables” on page 78|

* |“Inserting data from column values that use host variables” on page 79|
 [“Using indicator variables with host variables” on page 79

e |“Assignments and comparisons using different data types” on page 81|
* |“Changing the coded character set ID of host variables” on page 81|

Retrieving a single row of data into host variables

You can use one or more host variables to specify a program data area that is to
contain the column values of a retrieved row. The INTO clause of the SELECT
statement names one or more host variables to contain the retrieved column
values. The named variables correspond one-to-one with the list of column names
in the SELECT statement.

If you do not know how many rows DB2 will return, or if you expect more than
one row to return, you must use an alternative to the SELECT ... INTO statement.
The DB2 cursor enables an application to return a set of rows and fetch either one
row at a time or one rowset at a time from the result table. For information about
using cursors, see [Chapter 7, “Using a cursor to retrieve a set of rows,” on page 99/

Example: Retrieving a single row: Suppose you are retrieving the LASTNAME and
WORKDEPT column values from the DSN8810.EMP table for a particular
employee. You can define a host variable in your program to hold each column
and then name the host variables with an INTO clause, as in the following COBOL
example:
MOVE '000110' TO CBLEMPNO.
EXEC SQL
SELECT LASTNAME, WORKDEPT

INTO :CBLNAME, :CBLDEPT

FROM DSN8810.EMP

WHERE EMPNO = :CBLEMPNO
END-EXEC.

Note that the host variable CBLEMPNO is preceded by a colon (:) in the SQL
statement, but it is not preceded by a colon in the COBOL MOVE statement. In the
DATA DIVISION section of a COBOL program, you must declare the host
variables CBLEMPNO, CBLNAME, and CBLDEPT to be compatible with the data
types in the columns EMPNO, LASTNAME, and WORKDEPT of the
DSN8810.EMP table.

You can use a host variable to specify a value in a search condition. For this
example, you have defined a host variable CBLEMPNO for the employee number,
so that you can retrieve the name and the work department of the employee
whose number is the same as the value of the host variable, CBLEMPNO; in this
case, 000110.

If the SELECT ... INTO statement returns more than one row, an error occurs, and
any data that is returned is undefined and unpredictable.

To prevent undefined and unpredictable data from being returned, you can use the
FETCH FIRST 1 ROW ONLY clause to ensure that only one row is returned. For

example:

Chapter 6. Basics of coding SQL in an application program 77

EXEC SQL
SELECT LASTNAME, WORKDEPT
INTO :CBLNAME, :CBLDEPT
FROM DSN8810.EMP
FETCH FIRST 1 ROW ONLY
END-EXEC.

You can include an ORDER BY clause in the preceding example. This gives your
application some control over which row is returned when you use a FETCH
FIRST 1 ROW ONLY clause in a SELECT INTO statement.
EXEC SQL
SELECT LASTNAME, WORKDEPT

INTO :CBLNAME, :CBLDEPT

FROM DSN8810.EMP

ORDER BY LASTNAME

FETCH FIRST 1 ROW ONLY
END-EXEC.

When you specify both the ORDER BY clause and the FETCH FIRST clause,
ordering is done first and then the first row is returned. This means that the
ORDER BY clause determines which row is returned. If you specify both the
ORDER BY clause and the FETCH FIRST clause, ordering is performed on the
entire result set before the first row is returned.

Example: Specifying expressions in the SELECT clause: When you specify a list of
items in the SELECT clause, you can use more than the column names of tables
and views. You can request a set of column values mixed with host variable values
and constants. For example:
MOVE 4476 TO RAISE.
MOVE '000220' TO PERSON.
EXEC SQL
SELECT EMPNO, LASTNAME, SALARY, :RAISE, SALARY + :RAISE
INTO :EMP-NUM, :PERSON-NAME, :EMP-SAL, :EMP-RAISE, :EMP-TTL
FROM DSN8810.EMP
WHERE EMPNO = :PERSON
END-EXEC.

The following results have column headings that represent the names of the host
variables:

EMP-NUM PERSON-NAME EMP-SAL EMP-RAISE EMP-TTL

000220 LUTZ 29840 4476 34316

Example: Specifying summary values in the SELECT clause: You can request
summary values to be returned from aggregate functions. For example:
MOVE 'D11' TO DEPTID.
EXEC SQL
SELECT WORKDEPT, AVG(SALARY)
INTO :WORK-DEPT, :AVG-SALARY
FROM DSN8810.EMP
WHERE WORKDEPT = :DEPTID
END-EXEC.

Updating data using values in host variables
You can set or change values in a DB2 table to the value of host variables. To do
this, use the host variable name in the SET clause of the UPDATE statement.

Example: Updating a single row: The following example changes an employee’s
phone number:

78 Application Programming and SQL Guide

MOVE '4246' TO NEWPHONE.
MOVE '000110' TO EMPID.
EXEC SQL
UPDATE DSN8810.EMP
SET PHONENO = :NEWPHONE
WHERE EMPNO = :EMPID
END-EXEC.

Example: Updating multiple rows: The following example gives the employees in a
particular department a salary increase of 10%:
MOVE 'D11' TO DEPTID.
EXEC SQL
UPDATE DSN8810.EMP

SET SALARY = 1.10 = SALARY

WHERE WORKDEPT = :DEPTID
END-EXEC.

Inserting data from column values that use host variables

You can insert a single row of data into a DB2 table by using the INSERT
statement with column values in the VALUES clause. A column value can be a host
variable, a constant, or any valid combination of host variables and constants.

To insert multiple rows, you can use the form of the INSERT statement that selects
values from another table or view. You can also use a form of the INSERT
statement that inserts multiple rows from values that are provided in host variable
arrays. For more information, see [“Inserting multiple rows of data from host|
[variable arrays” on page 83/

Example: The following example inserts a single row into the activity table:

EXEC SQL
INSERT INTO DSN8810.ACT
VALUES (:HV-ACTNO, :HV-ACTKWD, :HV-ACTDESC)
END-EXEC.

Using indicator variables with host variables
Indicator variables are small integers that you can use to:

¢ Determine whether the value of an associated output host variable is null or
indicate that the value of an input host variable is null

* Determine the original length of a character string that was truncated during
assignment to a host variable

* Determine that a character value could not be converted during assignment to a
host variable

* Determine the seconds portion of a time value that was truncated during
assignment to a host variable

Retrieving data and testing the indicator variable: When DB2 retrieves the value
of a column into a host variable, you can test the indicator variable that is
associated with that host variable:

o If the value of the indicator variable is less than zero, the column value is null.
The value of the host variable does not change from its previous value. If it is
null because of a numeric or character conversion error, or an arithmetic
expression error, DB2 sets the indicator variable to -2. See [“Handling arithmetid
[or conversion errors” on page 89 for more information.

e If the indicator variable contains a positive integer, the retrieved value is
truncated, and the integer is the original length of the string.

Chapter 6. Basics of coding SQL in an application program 79

e If the value of the indicator variable is zero, the column value is nonnull. If the
column value is a character string, the retrieved value is not truncated.

An error occurs if you do not use an indicator variable and DB2 retrieves a null
value.

You can specify an indicator variable, preceded by a colon, immediately after the
host variable. Optionally, you can use the word INDICATOR between the host
variable and its indicator variable. Thus, the following two examples are

equivalent:
EXEC SQL EXEC SQL
SELECT PHONENO SELECT PHONENO
INTO :CBLPHONE:INDNULL INTO :CBLPHONE INDICATOR :INDNULL
FROM DSN8810.EMP FROM DSN8810.EMP
WHERE EMPNO = :EMPID WHERE EMPNO = :EMPID
END-EXEC. END-EXEC.

You can then test INDNULL for a negative value. If it is negative, the
corresponding value of PHONENO is null, and you can disregard the contents of
CBLPHONE.

When you use a cursor to fetch a column value, you can use the same technique to
determine whether the column value is null.

Inserting null values into columns by using host variable indicators: You can use
an indicator variable to insert a null value from a host variable into a column.
When DB2 processes INSERT and UPDATE statements, it checks the indicator
variable (if one exists). If the indicator variable is negative, the column value is
null. If the indicator variable is greater than -1, the associated host variable
contains a value for the column.

For example, suppose your program reads an employee ID and a new phone
number, and must update the employee table with the new number. The new
number could be missing if the old number is incorrect, but a new number is not
yet available. If the new value for column PHONENO might be null, you can use
an indicator variable in the UPDATE statement. For example:
EXEC SQL

UPDATE DSN8810.EMP

SET PHONENO = :NEWPHONE:PHONEIND

WHERE EMPNO = :EMPID
END-EXEC.

When NEWPHONE contains a non-null value, set PHONEIND to zero by
preceding the UPDATE statement with the following line:

MOVE O TO PHONEIND.

When NEWPHONE contains a null value, set PHONEIND to a negative value by
preceding the UPDATE statement with the following line:

MOVE -1 TO PHONEIND.

Testing for a null column value: You cannot determine whether a column value is
null by comparing it to a host variable with an indicator variable that is set to -1.
To test whether a column has a null value, use the IS NULL predicate or the IS
DISTINCT FROM predicate. For example, the following code does not select the
employees who have no phone number:

80 Application Programming and SQL Guide

MOVE -1 TO PHONE-IND.
EXEC SQL
SELECT LASTNAME
INTO :PGM-LASTNAME
FROM DSN8810.EMP
WHERE PHONENO = :PHONE-HV:PHONE-IND
END-EXEC.

You can use the IS NULL predicate to select employees who have no phone
number, as in the following statement:

EXEC SQL
SELECT LASTNAME
INTO :PGM-LASTNAME
FROM DSN8810.EMP
WHERE PHONENO IS NULL
END-EXEC.

To select employees whose phone numbers are equal to the value of :PHONE-HV
and employees who have no phone number (as in the second example), you would
need to code two predicates, one to handle the non-null values and another to
handle the null values, as in the following statement:

EXEC SQL
SELECT LASTNAME
INTO :PGM-LASTNAME
FROM DSN8810.EMP
WHERE (PHONENO = :PHONE-HV AND PHONENO IS NOT NULL AND :PHONE-HV IS NOT NULL)
OR
(PHONENO IS NULL AND :PHONE-HV:PHONE-IND IS NULL)
END-EXEC.

You can simplify the preceding example by coding the statement using the NOT
form of the IS DISTINCT FROM predicate, as in the following statement:
EXEC SQL
SELECT LASTNAME
INTO :PGM-LASTNAME
FROM DSN8810.EMP
WHERE PHONENO IS NOT DISTINCT FROM :PHONE-HV:PHONE-IND
END-EXEC.

Assignments and comparisons using different data types

For assignments and comparisons involving a DB2 column and a host variable of a
different data type or length, you can expect conversions to occur. If you assign
retrieved data to a host variable or compare retrieved data to a value in a host
variable, see Chapter 2 of [DB2 SQL Referencd for the rules that are associated with
these operations.

Changing the coded character set ID of host variables

All DB2 string data, other than BLOB data, has an encoding scheme and a coded
character set ID (CCSID) associated with it. You can use the DECLARE VARIABLE
statement to associate an encoding scheme and a CCSID with individual host
variables. The DECLARE VARIABLE statement has the following effects on a host
variable:

* When you use the host variable to update a table, the local subsystem or the
remote server assumes that the data in the host variable is encoded with the
CCSID and encoding scheme that the DECLARE VARIABLE statement assigns.

* When you retrieve data from a local or remote table into the host variable, the
retrieved data is converted to the CCSID and encoding scheme that are assigned
by the DECLARE VARIABLE statement.

Chapter 6. Basics of coding SQL in an application program 81

Using

You can use the DECLARE VARIABLE statement in static or dynamic SQL
applications. However, you cannot use the DECLARE VARIABLE statement to
control the CCSID and encoding scheme of data that you retrieve or update using
an SQLDA. See|”Changing the CCSID for retrieved data” on page 565| for
information on changing the CCSID in an SQLDA.

When you use a DECLARE VARIABLE statement in a program, put the DECLARE
VARIABLE statement after the corresponding host variable declaration and before
your first reference to that host variable.

Example: Using a DECLARE VARIABLE statement to change the encoding scheme
of retrieved data: Suppose that you are writing a C program that runs on a DB2
UDB for z/0OS subsystem. The subsystem has an EBCDIC application encoding
scheme. The C program retrieves data from the following columns of a local table
that is defined with CCSID UNICODE.

PARTNUM CHAR(10)

JPNNAME GRAPHIC(10)
ENGNAME VARCHAR(30)

Because the application encoding scheme for the subsystem is EBCDIC, the
retrieved data is EBCDIC. To make the retrieved data Unicode, use DECLARE
VARIABLE statements to specify that the data that is retrieved from these columns
is encoded in the default Unicode CCSIDs for the subsystem. Suppose that you
want to retrieve the character data in Unicode CCSID 1208 and the graphic data in
Unicode CCSID 1200. Use DECLARE VARIABLE statements like these:
EXEC SQL BEGIN DECLARE SECTION;
char hvpartnum[11];
EXEC SQL DECLARE :hvpartnum VARIABLE CCSID 1208;
sqldbchar hvjpnname[11];
EXEC SQL DECLARE :hvjpnname VARIABLE CCSID 1200;
struct {

short len;

char d[30];

} hvengname;

EXEC SQL DECLARE :hvengname VARIABLE CCSID 1208;
EXEC SQL END DECLARE SECTION;

The BEGIN DECLARE SECTION and END DECLARE SECTION statements mark
the beginning and end of a host variable declare section.

host variable arrays

To use a host variable array in an SQL statement, specify any valid host variable
array that is declared according to the host language rules that are described in
[Chapter 9, “Embedding SQL statements in host languages,” on page 135 You can
specify host variable arrays in C or C++, COBOL, and PL/I. You must declare the
array in the host program before you use it.

For more information about declaring host variable arrays, see the appropriate
language section:

« C or C++:["Declaring host variable arrays” on page 159|

« COBOL:|"Declaring host variable arrays” on page 190

* PL/I: ["Declaring host variable arrays” on page 22§

Assembler support for the multiple-row FETCH statement is limited to these
statements with the USING DESCRIPTOR clause. The DB2 precompiler does not
recognize declarations of host variable arrays for Assembler; it recognizes these
declarations only in C, COBOL, and PL/I.

82 Application Programming and SQL Guide

This section describes the following ways to use host variable arrays:
« |"Retrieving multiple rows of data into host variable arrays”|

¢ [“Inserting multiple rows of data from host variable arrays”]

« |"Using indicator variable arrays with host variable arrays”|

Retrieving multiple rows of data into host variable arrays

You can use host variable arrays to specify a program data area to contain multiple
rows of column values. A DB2 rowset cursor enables an application to retrieve and
process a set of rows from the result table of the cursor. For information about

using rowset cursors, see [‘Accessing data by using a rowset-positioned cursor” on|
page 104.

Inserting multiple rows of data from host variable arrays

You can use a form of the INSERT statement to insert multiple rows from values
that are provided in host variable arrays. Each array contains values for a column
of the target table. The first value in an array corresponds to the value for that
column for the first inserted row, the second value in the array corresponds to the
value for the column in the second inserted row, and so on. DB2 determines the
attributes of the values based on the declaration of the array.

Example: You can insert the number of rows that are specified in the host variable
NUM-ROWS by using the following INSERT statement:
EXEC SQL
INSERT INTO DSN8810.ACT

(ACTNO, ACTKWD, ACTDESC)

VALUES (:HVAl1, :HVA2, :HVA3)

FOR :NUM-ROWS ROWS
END-EXEC.

Assume that the host variable arrays HVA1, HVA2, and HVA3 have been declared
and populated with the values that are to be inserted into the ACTNO, ACTKWD,
and ACTDESC columns. The NUM-ROWS host variable specifies the number of
rows that are to be inserted, which must be less than or equal to the dimension of
each host variable array.

Using indicator variable arrays with host variable arrays

You can use indicator variable arrays with host variable arrays in the same way
that you use indicator variables with host variables. For details, see
findicator variables with host variables” on page 79] An indicator variable array
must have at least as many entries as its host variable array.

Retrieving data and using indicator arrays: When you retrieve data into a host
variable array, if a value in its indicator array is negative, you can disregard the
contents of the corresponding element in the host variable array. If a value in an
indicator array is:

-1 The corresponding row in the column that is being retrieved is null.

-2 DB2 returns a null value because an error occurred in numeric conversion
or in an arithmetic expression in the corresponding row.

-3 DB2 returns a null value because a hole was detected for the
corresponding row during a multiple-row FETCH operation.

For information about the multiple-row FETCH operation, see [“Step 4: Execute]

ISQL statements with a rowset cursor” on page 105) For information about holes in
the result table of a cursor, see|[“Holes in the result table of a scrollable cursor” on|
|o: e 115,

Chapter 6. Basics of coding SQL in an application program 83

—

H o H H H*

Specifying an indicator array: You can specify an indicator variable array,
preceded by a colon, immediately after the host variable array. Optionally, you can
use the word INDICATOR between the host variable array and its indicator
variable array.

Example: Suppose that you declare a scrollable rowset cursor by using the
following statement:

EXEC SQL
DECLARE CURS1 SCROLL CURSOR WITH ROWSET POSITIONING FOR
SELECT PHONENO
FROM DSN8810.EMP
END-EXEC.

For information about using rowset cursors, see|”Accessing data by using al
frowset-positioned cursor” on page 104

The following two specifications of indicator arrays in the multiple-row FETCH
statement are equivalent:

EXEC SQL EXEC SQL
FETCH NEXT ROWSET CURS1 FETCH NEXT ROWSET CURS1
FOR 10 ROWS FOR 10 ROWS
INTO :CBLPHONE :INDNULL INTO :CBLPHONE INDICATOR :INDNULL
END-EXEC. END-EXEC.

After the multiple-row FETCH statement, you can test each element of the
INDNULL array for a negative value. If an element is negative, you can disregard
the contents of the corresponding element in the CBLPHONE host variable array.

Inserting null values by using indicator arrays: You can use a negative value in
an indicator array to insert a null value into a column.

Example: Assume that host variable arrays hval and hva2 have been populated
with values that are to be inserted into the ACTNO and ACTKWD columns.
Assume the ACTDESC column allows nulls. To set the ACTDESC column to null,
assign -1 to the elements in its indicator array:

/* Initialize each indicator array =/
for (i=0; i<10; i++) {

ind1[i] = 0;
ind2[i] = 0;
ind3[i] = -1;
}
EXEC SQL

INSERT INTO DSN8810.ACT
(ACTNO, ACTKWD, ACTDESC)
VALUES (:hval:indl, :hva2:ind2, :hva3:ind3)
FOR 10 ROWS;

DB2 ignores the values in the hva3 array and assigns the values in the ARTDESC
column to null for the 10 rows that are inserted.

Identifying errors during output host variable processing: Output host variable
processing is the process of moving data that is retrieved from DB2 (such as from a
FETCH) to an application. Errors that occur while processing output host variables
do not affect the position of the cursor, and are usually caused by a problem in
converting from one data type to another.

84 Application Programming and SQL Guide

H H I

BT T T T

H H H H*

*+

H*

ST T

HHFH O HFHHF OHHFHF OHFHFHF OHFHFHFH OFHHHF OH

FH H

Example: Suppose that an integer value of 32768 is fetched into a smallint host
variable. The conversion might cause an error if you provide insufficient
conversion information to DB2.

If an indicator variable is provided during output host variable processing or if
data type conversion is not required, a positive SQLCODE is returned for the row
in most cases. In other cases where data conversion problems occur, a negative
SQLCODE is returned for that row. Regardless of the SQLCODE for the row, no
new values are assigned to the host variable or to subsequent variables for that
row. Any values that are already assigned to variables remain assigned.

Even when a negative SQLCODE is returned for a row, statement processing
continues and a positive SQLCODE is returned for the statement (SQLSTATE
01668, SQLCODE +354). To determine which rows cause errors when SQLCODE =
+354, you can use GET DIAGNOSTICS.

Example: Suppose that no indicator variables are provided for values that are
returned by the following statement:

FETCH FIRST ROWSET FROM C1 FOR 10 ROWS INTO :hva_coll, :hva_col2;

For each row with an error, a negative SQLCODE is recorded and processing
continues until the 10 rows are fetched. When SQLCODE = +354 is returned for
the statement, you can use GET DIAGNOSTICS to determine which errors occur
for which rows. The following statement returns num_rows = 10 and num_cond =
3:

GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;

To investigate the three conditions, use the following statements:

Statement A

GET DIAGNOSTICS CONDITION 3 :sqlstate = RETURNED SQLSTATE, :sqlcode
DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Output A
sqlstate = 22003
sqlcode = -304
row_num =5

Statement B

GET DIAGNOSTICS CONDITION 2 :sqlstate = RETURNED_SQLSTATE, :sqlcode
DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Output B
sqlstate = 22003
sqlcode = -802
row_num =7

Statement C
GET DIAGNOSTICS CONDITION 1 :sqlstate = RETURNED_SQLSTATE, :sqlcode
DB2_RETURNED_SQLCODE, :row_num = DB2_ROW_NUMBER;

Output C
sqlstate = 01668
sqlcode = +354
row_num = 0

The fifth row has a data mapping error (-304) for column 1 and the seventh row
has a data mapping error (-802)for column 2. These rows do not contain valid data,
and they should not be used.

Chapter 6. Basics of coding SQL in an application program 85

Using host structures

You can substitute a host structure for one or more host variables. You can also use
indicator variables (or indicator structures) with host structures.

Retrieving a single row of data into a host structure
In the following example, assume that your COBOL program includes the
following SQL statement:
EXEC SQL
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT
INTO :EMPNO, :FIRSTNME, :MIDINIT, :LASTNAME, :WORKDEPT
FROM DSN8810.VEMP

WHERE EMPNO = :EMPID
END-EXEC.

If you want to avoid listing host variables, you can substitute the name of a
structure, say :PEMP, that contains :EMPNO, :FIRSTNME, :MIDINIT, :LASTNAME,
and :WORKDEPT. The example then reads:
EXEC SQL
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT
INTO :PEMP
FROM DSN8810.VEMP
WHERE EMPNO = :EMPID
END-EXEC.

You can declare a host structure yourself, or you can use DCLGEN to generate a
COBOL record description, PL/I structure declaration, or C structure declaration
that corresponds to the columns of a table. For more detailed information about
coding a host structure in your program, see [Chapter 9, “Embedding SQIJ
lstatements in host languages,” on page 135.|For more information about using
DCLGEN and the restrictions that apply to the C language, see |Chapter 8,|
[“Generating declarations for your tables using DCLGEN,” on page 127

Using indicator variables with host structures

You can define an indicator structure (an array of halfword integer variables) to
support a host structure. You define indicator structures in the DATA DIVISION
section of your COBOL program. If the column values your program retrieves into
a host structure can be null, you can attach an indicator structure name to the host
structure name. This allows DB2 to notify your program about each null value it
returns to a host variable in the host structure. For example:

01 PEMP-ROW.

10 EMPNO PIC X(6).

10 FIRSTNME.
49 FIRSTNME-LEN PIC S9(4) USAGE COMP.
49 FIRSTNME-TEXT PIC X(12).

10 MIDINIT PIC X(1).

10 LASTNAME.
49 LASTNAME-LEN PIC S9(4) USAGE COMP.
49 LASTNAME-TEXT PIC X(15).

10 WORKDEPT PIC X(3).
10 EMP-BIRTHDATE PIC X(10).
01 INDICATOR-TABLE.
02 EMP-IND PIC S9(4) COMP OCCURS 6 TIMES.

MOVE '006230" TO EMPNO.

EXEC SQL
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, BIRTHDATE

86 Application Programming and SQL Guide

INTO :PEMP-ROW:EMP-IND

FROM DSN8810.EMP

WHERE EMPNO = :EMPNO
END-EXEC.

In this example, EMP-IND is an array containing six values, which you can test for
negative values. If, for example, EMP-IND(6) contains a negative value, the
corresponding host variable in the host structure (EMP-BIRTHDATE) contains a
null value.

Because this example selects rows from the table DSN8810.EMP, some of the values
in EMP-IND are always zero. The first four columns of each row are defined NOT
NULL. In the preceding example, DB2 selects the values for a row of data into a
host structure. You must use a corresponding structure for the indicator variables
to determine which (if any) selected column values are null. For information on
using the IS NULL keyword phrase in WHERE clauses, see [‘Selecting rows using]
search conditions: WHERE” on page 8.

Checking the execution of SQL statements

You can check the execution of SQL statements in various ways:

+ By displaying specific fields in the SQLCA; see [“Using the SQL communication|
larea (SQLCA)."

* By testing SQLCODE or SQLSTATE for specific values; see [“SOLCODE and|
[SQLSTATE” on page 88)

* By using the WHENEVER statement in your application program; see
[WHENEVER statement” on page 88

* By testing indicator variables to detect numeric errors; see [“Handling arithmetid
[or conversion errors” on page 89

* By using the GET DIAGNOSTICS statement in your application program to
return all the condition information that results from the execution of an SQL
statement; see|“The GET DIAGNOSTICS statement” on page 90.|

* By calling DSNTIAR to display the contents of the SQLCA; see
[DSNTIAR to display SQLCA fields” on page 94.|

Using the SQL communication area (SQLCA)

A program that includes SQL statements can have an area set apart for
communication with DB2—an SQL communication area (SQLCA). If you use the
SQLCA, include the necessary instructions to display information that is contained
in the SQLCA in your application program. Alternatively, you can use the GET
DIAGNOSTICS statement, which is an SQL standard, to diagnose problems.

* When DB2 processes an SQL statement, it places return codes that indicate the
success or failure of the statement execution in SQLCODE and SQLSTATE. For
details, see[“SQLCODE and SQLSTATE” on page 88

* When DB2 processes an UPDATE, INSERT, or DELETE statement, and the
statement execution is successful, the contents of SQLERRD(3) in the SQLCA is
set to the number of rows that are updated, inserted, or deleted.

* When DB2 processes a FETCH statement, and the FETCH is successful, the
contents of SQLERRD(3) in the SQLCA is set to the number of returned rows.

* When DB2 processes a multiple-row FETCH statement, the contents of
SQLCODE is set to +100 if the last row in the table has been returned with the
set of rows. For details, see [“Accessing data by using a rowset-positioned|
[cursor” on page 104)

Chapter 6. Basics of coding SQL in an application program 87

e If SQLWARNO contains W, DB2 has set at least one of the SQL warning flags
(SQLWARNT1 through SQLWARNA):

— SQLWARNT1 contains N for non-scrollable cursors and S for scrollable cursors
after an OPEN CURSOR or ALLOCATE CURSOR statement.

— SQLWARN4 contains I for insensitive scrollable cursors, S for sensitive static
scrollable cursors, and D for sensitive dynamic scrollable cursors, after an
OPEN CURSOR or ALLOCATE CURSOR statement, or blank if the cursor is
not scrollable.

— SQLWARNS contains a character value of 1 (read only), 2 (read and delete),
or 4 (read, delete, and update) to indicate the operation that is allowed on the
result table of the cursor.

See Appendix D of [DB2 SQL Reference|for a description of all the fields in the
SQLCA.

SQLCODE and SQLSTATE

Whenever an SQL statement executes, the SQLCODE and SQLSTATE fields of the
SQLCA receive a return code. Portable applications should use SQLSTATE instead
of SQLCODE, although SQLCODE values can provide additional DB2-specific
information about an SQL error or warning.

SQLCODE: DB2 returns the following codes in SQLCODE:

e If SQLCODE = 0, execution was successful.

e If SQLCODE > 0, execution was successful with a warning.
* If SQLCODE < 0, execution was not successful.

SQLCODE 100 indicates that no data was found.

The meaning of SQLCODESs other than 0 and 100 varies with the particular
product implementing SQL.

SQLSTATE: SQLSTATE allows an application program to check for errors in the

same way for different IBM database management systems. See Appendix C of
DB2 Codes|for a complete list of possible SQLSTATE values.

Using SQLCODE and SQLSTATE: An advantage to using the SQLCODE field is
that it can provide more specific information than the SQLSTATE. Many of the
SQLCODEs have associated tokens in the SQLCA that indicate, for example, which
object incurred an SQL error. However, an SQL standard application uses only
SQLSTATE.

You can declare SQLCODE and SQLSTATE (SQLCOD and SQLSTA in Fortran) as
stand-alone host variables. If you specify the STDSQL(YES) precompiler option,
these host variables receive the return codes, and you should not include an
SQLCA in your program.

The WHENEVER statement

The WHENEVER statement causes DB2 to check the SQLCA and continue
processing your program, or branch to another area in your program if an error,
exception, or warning occurs. The condition handling area of your program can
then examine SQLCODE or SQLSTATE to react specifically to the error or
exception.

88 Application Programming and SQL Guide

The WHENEVER statement is not supported for REXX. For information on REXX
error handling, see ["Embedding SQL statements in a REXX procedure” on pageg
-43.

The WHENEVER statement allows you to specify what to do if a general condition
is true. You can specify more than one WHENEVER statement in your program.
When you do this, the first WHENEVER statement applies to all subsequent SQL
statements in the source program until the next WHENEVER statement.

The WHENEVER statement looks like this:

EXEC SQL
WHENEVER condition action
END-EXEC

The condition of the WHENEVER statement is one of these three values:

SQLWARNING
Indicates what to do when SQLWARNO = W or SQLCODE contains a
positive value other than 100. DB2 can set SQLWARNO for several
reasons—for example, if a column value is truncated when moved into a
host variable. Your program might not regard this as an error.

SQLERROR
Indicates what to do when DB2 returns an error code as the result of an
SQL statement (SQLCODE < 0).

NOT FOUND
Indicates what to do when DB2 cannot find a row to satisfy your SQL
statement or when there are no more rows to fetch (SQLCODE = 100).

The action of the WHENEVER statement is one of these two values:

CONTINUE
Specifies the next sequential statement of the source program.

GOTO or GO TO host-label
Specifies the statement identified by host-label. For host-label, substitute a
single token, preceded by a colon. The form of the token depends on the
host language. In COBOL, for example, it can be section-name or an
unqualified paragraph-name.

The WHENEVER statement must precede the first SQL statement it is to affect.
However, if your program checks SQLCODE directly, you must check SQLCODE
after each SQL statement.

Handling arithmetic or conversion errors

Numeric or character conversion errors or arithmetic expression errors can set an
indicator variable to -2. For example, division by zero and arithmetic overflow do
not necessarily halt the execution of a SELECT statement. If you use indicator
variables and an error occurs in the SELECT list, the statement can continue to
execute and return good data for rows in which the error does not occur.

For rows in which a conversion or arithmetic expression error does occur, the
indicator variable indicates that one or more selected items have no meaningful
value. The indicator variable flags this error with a -2 for the affected host variable
and an SQLCODE of +802 (SQLSTATE ’01519’) in the SQLCA.

Chapter 6. Basics of coding SQL in an application program 89

The GET DIAGNOSTICS statement

You can use the GET DIAGNOSTICS statement to return diagnostic information
about the last SQL statement that was executed. You can request individual items
of diagnostic information from the following groups of items:

e Statement items, which contain information about the SQL statement as a whole

* Condition items, which contain information about each error or warning that
occurred during the execution of the SQL statement

e Connection items, which contain information about the SQL statement if it was a
CONNECT statement

In addition to requesting individual items, you can request that GET
DIAGNOSTICS return ALL diagnostic items that are set during the execution of
the last SQL statement as a single string. For more information, see Chapter 5 of
IDB2 SQL Referencel

Use the GET DIAGNOSTICS statement to handle multiple SQL errors that might
result from the execution of a single SQL statement. First, check SQLSTATE (or
SQLCODE) to determine whether diagnostic information should be retrieved by
using GET DIAGNOSTICS. This method is especially useful for diagnosing
problems that result from a multiple-row INSERT that is specified as NOT
ATOMIC CONTINUE ON SQLEXCEPTION.

Even if you use only the GET DIAGNOSTICS statement in your application
program to check for conditions, you must either include the instructions required
to use the SQLCA or you must declare SQLSTATE (or SQLCODE) separately in
your program.

Restriction: If you issue a GET DIAGNOSTICS statement immediately following
an SQL statement that uses private protocol access, DB2 returns an error.

Retrieving statement and condition items

When you use the GET DIAGNOSTICS statement, you assign the requested
diagnostic information to host variables. Declare each target host variable with a
data type that is compatible with the data type of the requested item. For a
description of available items and their data types, see ['Data types for GET|
[DIAGNOSTICS items” on page 91.]

To retrieve condition information, you must first retrieve the number of condition
items (that is, the number of errors and warnings that DB2 detected during the
execution of the last SQL statement). The number of condition items is at least one.
If the last SQL statement returned SQLSTATE "00000” (or SQLCODE 0), the number
of condition items is one.

Example: Using GET DIAGNOSTICS with multiple-row INSERT: You want to
display diagnostic information for each condition that might occur during the
execution of a multiple-row INSERT statement in your application program. You
specify the INSERT statement as NOT ATOMIC CONTINUE ON SQLEXCEPTION,
which means that execution continues regardless of the failure of any single-row
insertion. DB2 does not insert the row that was processed at the time of the error.

In[Figure 10 on page 91} the first GET DIAGNOSTICS statement returns the
number of rows inserted and the number of conditions returned. The second GET
DIAGNOSTICS statement returns the following items for each condition:

90 Application Programming and SQL Guide

SQLCODE, SQLSTATE, and the number of the row (in the rowset that was being
inserted) for which the condition occurred.
In the activity table, the ACTNO column is defined as SMALLINT. Suppose that
EXEC SQL BEGIN DECLARE SECTION;

long row_count, num_condns, i;

long ret_sqlcode, row_num;

char ret_sqlstate[6];

EXéé.SQL END DECLARE SECTION;
EXEC SQL
INSERT INTO DSN8810.ACT
(ACTNO, ACTKWD, ACTDESC)
VALUES (:hval, :hva2, :hva3)

FOR 10 ROWS
NOT ATOMIC CONTINUE ON SQLEXCEPTION;

EXEC SQL GET DIAGNOSTICS
:row_count = ROW_COUNT, :num_condns = NUMBER;
printf("Number of rows inserted = %d\n", row_count);

for (i=1; i<=num_condns; i++) {
EXEC SQL GET DIAGNOSTICS CONDITION :i
:ret_sqlcode DB2_RETURNED_SQLCODE,
:ret_sqlstate = RETURNED_SQLSTATE,
1row_num DB2_ROW_NUMBER;
printf("SQLCODE = %d, SQLSTATE = %s, ROW NUMBER = %d\n",
ret_sqlcode, ret_sqlstate, row_num);

}

Figure 10. Using GET DIAGNOSTICS to return the number of rows and conditions returned
and condition information

you declare the host variable array hval as an array with data type long, and you
populate the array so that the value for the fourth element is 32768.

If you check the SQLCA values after the INSERT statement, the value of
SQLCODE is equal to 0, the value of SQLSTATE is "00000’, and the value of
SQLERRD(3) is 9 for the number of rows that were inserted. However, the INSERT
statement specified that 10 rows were to be inserted.

The GET DIAGNOSTICS statement provides you with the information that you
need to correct the data for the row that was not inserted. The printed output from
your program looks like this:

Number of rows inserted = 9
SQLCODE = -302, SQLSTATE = 22003, ROW NUMBER = 4

The value 32768 for the input variable is too large for the target column ACTNO.
You can print the MESSAGE_TEXT condition item, or see |[DB2 Codes| for
information about SQLCODE -302.

Data types for GET DIAGNOSTICS items

[Table 4 on page 92} [Table 5 on page 93] and [Table 6 on page 94| specify the data
types for the statement, condition, and connection information items that you can
request by using the GET DIAGNOSTICS statement. You must declare each target
host variable with a data type that is compatible with the data type of the
requested item.

Chapter 6. Basics of coding SQL in an application program 91

Table 4. Data types for GET DIAGNOSTICS items that return statement information

Item

Description

Data type

DB2_GET_DIAGNOSTICS
_DIAGNOSTICS

After a GET DIAGNOSTICS statement, if
any error or warning occurred, this item

contains all of the diagnostics as a single
string.

VARCHAR(32672)

DB2_LAST_ROW

After a multiple-row FETCH statement,
this item contains a value of +100 if the
last row in the table is in the rowset that
was returned.

INTEGER

DB2_NUMBER_PARAMETER
_MARKERS

After a PREPARE statement, this item
contains the number of parameter
markers in the prepared statement.

INTEGER

DB2_NUMBER_RESULT_SETS

After a CALL statement that invokes a
stored procedure, this item contains the
number of result sets that are returned by
the procedure.

INTEGER

DB2_NUMBER_ROWS

After an OPEN or FETCH statement for
which the size of the result table is
known, this item contains the number of
rows in the result table. After a PREPARE
statement, this item contains the estimated
number of rows in the result table for the
prepared statement. For SENSITIVE
DYNAMIC cursors, this item contains the
approximate number of rows.

DECIMAL(31,0)

DB2_RETURN_STATUS

After a CALL statement that invokes an
SQL procedure, this item contains the
return status if the procedure contains a
RETURN statement.

INTEGER

DB2_SQL_ATTR
_CURSOR_HOLD

After an ALLOCATE or OPEN statement,
this item indicates whether the cursor can
be held open across multiple units of
work (Y or N).

CHAR(1)

DB2_SQL_ATTR
_CURSOR_ROWSET

After an ALLOCATE or OPEN statement,
this item indicates whether the cursor can
use rowset positioning (Y or N).

CHAR(1)

DB2_SQL_ATTR
_CURSOR_SCROLLABLE

After an ALLOCATE or OPEN statement,
this item indicates whether the cursor is
scrollable (Y or N).

CHAR(1)

DB2_SQL_ATTR
_CURSOR_SENSITIVITY

After an ALLOCATE or OPEN statement,
this item indicates whether the cursor
shows updates made by other processes
(sensitivity A, I, or S).

CHAR(1)

DB2_SQL_ATTR
_CURSOR_TYPE

After an ALLOCATE or OPEN statement,
this item indicates whether the cursor is
declared static (S for INSENSITIVE or
SENSITIVE STATIC) or dynamic (D for
SENSITIVE DYNAMICQ).

CHAR(1)

MORE

After any SQL statement, this item
indicates whether some conditions items
were discarded because of insufficient
storage (Y or N).

CHAR(1)

92 Application Programming and SQL Guide

Table 4. Data types for GET DIAGNOSTICS items that return statement information (continued)

Item

Description Data type

NUMBER

After any SQL statement, this item INTEGER
contains the number of condition items. If

no warning or error occurred, or if no

previous SQL statement has been

executed, the number that is returned is 1.

ROW_COUNT

After DELETE, INSERT, UPDATE, or DECIMAL(31,0)
FETCH, this item contains the number of

rows that are deleted, inserted, updated,

or fetched. After PREPARE, this item

contains the estimated number of result

rows in the prepared statement.

Table 5. Data types for GET DIAGNOSTICS items that return condition information

Item

Description Data type

CATALOG_NAME

This item contains the server name of the VARCHAR(128)
table that owns a constraint that caused an

error, or that caused an access rule or check

violation.

CONDITION_NUMBER

This item contains the number of the INTEGER
condition.

CURSOR_NAME

This item contains the name of a cursor in VARCHAR(128)
an invalid cursor state.

DB2_ERROR_CODEI1 This item contains an internal error code. INTEGER
DB2_ERROR_CODE2 This item contains an internal error code. INTEGER
DB2_ERROR_CODE3 This item contains an internal error code. INTEGER
DB2_ERROR_CODE4 This item contains an internal error code. INTEGER
DB2_INTERNAL For some errors, this item contains a INTEGER
_ERROR_POINTER negative value that is an internal error
pointer.
DB2_MESSAGE_ID This item contains the message ID that CHAR(10)

corresponds to the message that is contained
in the MESSAGE_TEXT diagnostic item.

DB2_MODULE_DETECTING
_ERROR

After any SQL statement, this item indicates CHAR(8)
which module detected the error.

DB2_ORDINAL_TOKEN_#n

After any SQL statement, this item contains VARCHAR(515)
the nth token, where 7 is a value from 1 to
100.

DB2_REASON_CODE

After any SQL statement, this item contains INTEGER
the reason code for errors that have a reason
code token in the message text.

DB2_RETURNED_SQLCODE

After any SQL statement, this item contains INTEGER
the SQLCODE for the condition.

DB2_ROW_NUMBER

After any SQL statement that involves DECIMAL(31,0)
multiple rows, this item contains the row

number on which DB2 detected the

condition.

DB2_TOKEN_COUNT

After any SQL statement, this item contains INTEGER
the number of tokens available for the
condition.

Chapter 6. Basics of coding SQL in an application program

93

Table 5. Data types for GET DIAGNOSTICS items that return condition information (continued)

Item Description Data type
MESSAGE_TEXT After any SQL statement, this item contains VARCHAR(32672)
the message text associated with the
SQLCODE.
RETURNED_SQLSTATE After any SQL statement, this item contains CHAR(5)
the SQLSTATE for the condition.
SERVER_NAME After a CONNECT, DISCONNECT, or SET = VARCHAR(128)
CONNECTION statement, this item contains
the name of the server specified in the
statement.
Table 6. Data types for GET DIAGNOSTICS items that return connection information
[tem Description Data type
DB2_AUTHENTICATION_TYPE This item contains the authentication type (S, CHAR(1)
C, D, E, or blank). For more information, see
Chapter 5 of [DB2 SQL Referencq
DB2_AUTHORIZATION_ID This item contains the authorization ID that VARCHAR(128)

is used by the connected server.

DB2_CONNECTION_STATE

This item indicates whether the connection is
unconnected (-1), local (0), or remote (1).

INTEGER

DB2_CONNECTION_STATUS

This item indicates whether updates can be
committed for the current unit of work (1 for
Yes, 2 for No).

INTEGER

DB2_ENCRYPTION_TYPE

This item contains one of the following
values that indicates the level of encryption
for the connection:

A Only the authentication tokens
(authid and password) are
encrypted

D All of the data for the connection is
encrypted

CHAR(1)

DB2_SERVER_CLASS_NAME

After a CONNECT or SET CONNECTION
statement, this item contains the DB2 server
class name.

VARCHAR(128)

DB2_PRODUCT_ID

This item contains the DB2 product
signature.

VARCHAR(S)

For a comi lete description of the GET DIAGNOSTICS items, see Chapter 5 of

Calling DSNTIAR to display SQLCA fields

You should check for errors codes before you commit data, and handle the errors
that they represent. The assembler subroutine DSNTIAR helps you to obtain a
formatted form of the SQLCA and a text message based on the SQLCODE field of
the SQLCA. You can retrieve this same message text by using the MESSAGE_TEXT
condition item field of the GET DIAGNOSTICS statement. Programs that require
long token message support should code the GET DIAGNOSTICS statement
instead of DSNTIAR.

You can find the programming language-specific syntax and details for calling
DSNTIAR on the following pages:

94 Application Programming and SQL Guide

For Assembler programs, see page
For C programs, see page @P
For COBOL programs, see page
For Fortran programs, see page [220)
For PL/I programs, see page

DSNTIAR takes data from the SQLCA, formats it into a message, and places the
result in a message output area that you provide in your application program.
Each time you use DSNTIAR, it overwrites any previous messages in the message
output area. You should move or print the messages before using DSNTIAR again,

and before the contents of the SQLCA change, to get an accurate view of the
SQLCA.

DSNTIAR expects the SQLCA to be in a certain format. If your application
modifies the SQLCA format before you call DSNTIAR, the results are
unpredictable.

Defining a message output area

The calling program must allocate enough storage in the message output area to
hold all of the message text. You will probably need no more than 10 lines,
80-bytes each, for your message output area. An application program can have
only one message output area.

You must define the message output area in VARCHAR format. In this varying
character format, a 2-byte length field precedes the data. The length field indicates
to DSNTIAR how many total bytes are in the output message area; the minimum
length of the output area is 240-bytes.

shows the format of the message output area, where length is the 2-byte

total length field, and the length of each line matches the logical record length
(Irecl) you specify to DSNTIAR.

Line:

1

2

n-1

Field sizes (in bytes):
+—2—»<«—Logical record length

v

Figure 11. Format of the message output area

When you call DSNTIAR, you must name an SQLCA and an output message area

in the DSNTIAR parameters. You must also provide the logical record length (Irecl)
as a value between 72 and 240 bytes. DSNTIAR assumes the message area contains
fixed-length records of length Irecl.

DSNTIAR places up to 10 lines in the message area. If the text of a message is
longer than the record length you specify on DSNTIAR, the output message splits

Chapter 6. Basics of coding SQL in an application program 95

into several records, on word boundaries if possible. The split records are indented.
All records begin with a blank character for carriage control. If you have more
lines than the message output area can contain, DSNTIAR issues a return code of
4. A completely blank record marks the end of the message output area.

Possible return codes from DSNTIAR
Code Meaning

0 Successful execution.

4 More data available than could fit into the provided message area.

8 Logical record length not between 72 and 240, inclusive.
12 Message area not large enough. The message length was 240 or greater.
16 Error in TSO message routine.

20 Module DSNTIA1 could not be loaded.
24 SQLCA data error.

Preparing to use DSNTIAR

DSNTIAR can run either above or below the 16-MB line of virtual storage. The
DSNTIAR object module that comes with DB2 has the attributes AMODE(31) and
RMODE(ANY). At install time, DSNTIAR links as AMODE(31) and RMODE(ANY).
DSNTIAR runs in 31-bit mode if any of the following conditions is true:

* DSNTIAR is linked with other modules that also have the attributes AMODE(31)
and RMODE(ANY).

* DSNTIAR is linked into an application that specifies the attributes AMODE(31)
and RMODE(ANY) in its link-edit JCL.

* An application loads DSNTIAR.

When loading DSNTIAR from another program, be careful how you branch to
DSNTIAR. For example, if the calling program is in 24-bit addressing mode and
DSNTIAR is loaded above the 16-MB line, you cannot use the assembler BALR
instruction or CALL macro to call DSNTIAR, because they assume that DSNTIAR
is in 24-bit mode. Instead, you must use an instruction that is capable of branching
into 31-bit mode, such as BASSM.

You can dynamically link (load) and call DSNTIAR directly from a language that
does not handle 31-bit addressing. To do this, link a second version of DSNTIAR
with the attributes AMODE(24) and RMODE(24) into another load module library.
Alternatively, you can write an intermediate assembler language program that calls
DSNTIAR in 31-bit mode and then call that intermediate program in 24-bit mode
from your application.

For more information on the allowed and default AMODE and RMODE settings
for a particular language, see the application programming guide for that
language. For details on how the attributes AMODE and RMODE of an application
are determined, see the linkage editor and loader user’s guide for the language in
which you have written the application.

A scenario for using DSNTIAR

Suppose you want your DB2 COBOL application to check for deadlocks and
timeouts, and you want to make sure your cursors are closed before continuing.
You use the statement WHENEVER SQLERROR to transfer control to an error
routine when your application receives a negative SQLCODE.

96 Application Programming and SQL Guide

In your error routine, you write a section that checks for SQLCODE -911 or -913.
You can receive either of these SQLCODEs when a deadlock or timeout occurs.
When one of these errors occurs, the error routine closes your cursors by issuing
the statement:

EXEC SQL CLOSE cursor-name

An SQLCODE of 0 or -501 resulting from that statement indicates that the close
was successful.

To use DSNTIAR to generate the error message text, first follow these steps:

1. Choose a logical record length (Irecl) of the output lines. For this example,
assume Irecl is 72 (to fit on a terminal screen) and is stored in the variable
named ERROR-TEXT-LEN.

2. Define a message area in your COBOL application. Assuming you want an area
for up to 10 lines of length 72, you should define an area of 720 bytes, plus a
2-byte area that specifies the total length of the message output area.

01 ERROR-MESSAGE.
02 ERROR-LEN ~ PIC S9(4) COMP VALUE +720.
02 ERROR-TEXT PIC X(72) OCCURS 10 TIMES

INDEXED BY ERROR-INDEX.
77 ERROR-TEXT-LEN PIC S9(9) COMP VALUE +72.

For this example, the name of the message area is ERROR-MESSAGE.

3. Make sure you have an SQLCA. For this example, assume the name of the
SQLCA is SQLCA.

To display the contents of the SQLCA when SQLCODE is 0 or -501, call DSNTIAR
after the SQL statement that produces SQLCODE 0 or -501:

CALL 'DSNTIAR' USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.

You can then print the message output area just as you would any other variable.
Your message might look like this:

DSNT4081 SQLCODE = -501, ERROR: THE CURSOR IDENTIFIED IN A FETCH OR
CLOSE STATEMENT IS NOT OPEN

DSNT4181 SQLSTATE 24501 SQLSTATE RETURN CODE

DSNT4151 SQLERRP DSNXERT SQL PROCEDURE DETECTING ERROR

DSNT4161 SQLERRD -315 0 0 -1 0 0 SQL DIAGNOSTIC INFORMATION

DSNT4161 SQLERRD X'FFFFFEC5' X'00000000' X'00000000'
X'FFFFFFFF' X'00000000' X'00000000' SQL DIAGNOSTIC
INFORMATION

Chapter 6. Basics of coding SQL in an application program 97

98 Application Programming and SQL Guide

Chapter 7. Using a cursor to retrieve a set of rows

Use a cursor in an application program to retrieve rows from a table or from a
result set that is returned by a stored procedure. This chapter explains how your
application program can use a cursor to retrieve rows from a table. For information
about using a cursor to retrieve rows from a result set that is returned by a stored
procedure, see [Chapter 25, “Using stored procedures for client/server processing,’]

Ign page 573.|

When you execute a SELECT statement, you retrieve a set of rows. That set of
rows is called the result table of the SELECT statement. In an application program,
you can use either of the following types of cursors to retrieve rows from a result
table:

* A row-positioned cursor retrieves at most a single row at a time from the result
table into host variables. At any point in time, the cursor is positioned on at
most a single row. For information about how to use a row-positioned cursor,
see [“Accessing data by using a row-positioned cursor.”

* A rowset-positioned cursor retrieves zero, one, or more rows at a time, as a
rowset, from the result table into host variable arrays. At any point in time, the
cursor can be positioned on a rowset. You can reference all of the rows in the
rowset, or only one row in the rowset, when you use a positioned DELETE or
positioned UPDATE statement. For information about how to use a
rowset-positioned cursor, see [“Accessing data by using a rowset-positioned|
[cursor” on page 104/

This chapter also includes the following sections:
+ |“Types of cursors” on page 109
+ |“Examples of using cursors” on page 120

Accessing data by using a row-positioned cursor

The basic steps in using a row-positioned cursor are:
1. Execute a DECLARE CURSOR statement to define the result table on which the
cursor operates. See [“Step 1: Declare the cursor.”|

2. Execute an OPEN CURSOR to make the cursor available to the application. See
[“Step 2: Open the cursor” on page 101.|

3. Specify what the program is to do when all rows have been retrieved. See
[“Step 3: Specify what to do at end-of-data” on page 101

4. Execute multiple SQL statements to retrieve data from the table or modify
selected rows of the table. See [‘Step 4: Execute SQL statements” on page 102}

5. Execute a CLOSE CURSOR statement to make the cursor unavailable to the
application. See [’Step 5: Close the cursor” on page 104/

Your program can have several cursors, each of which performs the previous steps.

Step 1: Declare the cursor

To define and identify a set of rows to be accessed with a cursor, issue a
DECLARE CURSOR statement. The DECLARE CURSOR statement names a cursor
and specifies a SELECT statement. The SELECT statement defines the criteria for

© Copyright IBM Corp. 1983, 2006 99

the rows that are to make up the result table. See Chapter 4 of [DB2 SQL Reference|
for a complete list of clauses that you can use in the SELECT statement.

The following example shows a simple form of the DECLARE CURSOR statement:

EXEC SQL
DECLARE C1 CURSOR FOR
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY
FROM DSN8810.EMP
END-EXEC.

You can use this cursor to list select information about employees.

More complicated cursors might include WHERE clauses or joins of several tables.
For example, suppose that you want to use a cursor to list employees who work
on a certain project. Declare a cursor like this to identify those employees:
EXEC SQL
DECLARE C2 CURSOR FOR
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY
FROM DSN8810.EMP X
WHERE EXISTS
(SELECT =
FROM DSN8810.PROJ Y
WHERE X.EMPNO=Y.RESPEMP
AND Y.PROJNO=:GOODPROJ) ;

Declaring cursors for tables that use multilevel security: You can declare a cursor
that retrieves rows from a table that uses multilevel security with row-level
granularity. However, the result table for the cursor contains only those rows that
have a security label value that is equivalent to or dominated by the security label
value of your ID. Refer to Part 3 (Volume 1) of [DB2 Administration Guide for a
discussion of multilevel security with row-level granularity.

Updating a column: You can update columns in the rows that you retrieve.
Updating a row after you use a cursor to retrieve it is called a positioned update. If
you intend to perform any positioned updates on the identified table, include the
FOR UPDATE clause. The FOR UPDATE clause has two forms:

* The first form is FOR UPDATE OF column-list. Use this form when you know in
advance which columns you need to update.

* The second form is FOR UPDATE, with no column list. Use this form when you
might use the cursor to update any of the columns of the table.

For example, you can use this cursor to update only the SALARY column of the
employee table:

EXEC SQL
DECLARE C1 CURSOR FOR
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY
FROM DSN8810.EMP X
WHERE EXISTS
(SELECT =
FROM DSN8810.PROJ Y
WHERE X.EMPNO=Y.RESPEMP
AND Y.PROJNO=:GOODPROJ)
FOR UPDATE OF SALARY;

If you might use the cursor to update any column of the employee table, define
the cursor like this:
EXEC SQL

DECLARE C1 CURSOR FOR
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY

100 Application Programming and SQL Guide

FROM DSN8810.EMP X
WHERE EXISTS
(SELECT =
FROM DSN8810.PROJ Y
WHERE X.EMPNO=Y.RESPEMP
AND Y.PROJNO=:GOODPROJ)
FOR UPDATE;

DB2 must do more processing when you use the FOR UPDATE clause without a
column list than when you use the FOR UPDATE clause with a column list.
Therefore, if you intend to update only a few columns of a table, your program
can run more efficiently if you include a column list.

The precompiler options NOFOR and STDSQL affect the use of the FOR UPDATE
clause in static SQL statements. For information about these options, see
If you do not specify the FOR UPDATE clause in a DECLARE
CURSOR statement, and you do not specify the STDSQL(YES) option or the
NOFOR precompiler options, you receive an error if you execute a positioned
UPDATE statement.

You can update a column of the identified table even though it is not part of the
result table. In this case, you do not need to name the column in the SELECT
statement. When the cursor retrieves a row (using FETCH) that contains a column
value you want to update, you can use UPDATE ... WHERE CURRENT OF to
identify the row that is to be updated.

Read-only result table: Some result tables cannot be updated—for example, the
result of joining two or more tables. The defining characteristics of a read-only
result tables are described in greater detail in the discussion of DECLARE
CURSOR in Chapter 5 of [DB2 SQL Reference

Step 2: Open the cursor

To tell DB2 that you are ready to process the first row of the result table, execute
the OPEN statement in your program. DB2 then uses the SELECT statement within
DECLARE CURSOR to identify a set of rows. If you use host variables in the
search condition of that SELECT statement, DB2 uses the current value of the
variables to select the rows. The result table that satisfies the search condition
might contain zero, one, or many rows. An example of an OPEN statement is:

EXEC SQL

OPEN C1
END-EXEC.

If you use the CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP
special registers in a cursor, DB2 determines the values in those special registers
only when it opens the cursor. DB2 uses the values that it obtained at OPEN time
for all subsequent FETCH statements.

Two factors that influence the amount of time that DB2 requires to process the
OPEN statement are:

¢ Whether DB2 must perform any sorts before it can retrieve rows

* Whether DB2 uses parallelism to process the SELECT statement of the cursor

For more information, see [“The effect of sorts on OPEN CURSOR” on page 777/

Step 3: Specify what to do at end-of-data

To determine whether the program has retrieved the last row of data, test the
SQLCODE field for a value of 100 or the SQLSTATE field for a value of "02000’.

Chapter 7. Using a cursor to retrieve a set of rows 101

These codes occur when a FETCH statement has retrieved the last row in the result
table and your program issues a subsequent FETCH. For example:

IF SQLCODE = 100 GO TO DATA-NOT-FOUND.

An alternative to this technique is to code the WHENEVER NOT FOUND
statement. The WHENEVER NOT FOUND statement causes your program to
branch to another part that then issues a CLOSE statement. For example, to branch
to label DATA-NOT-FOUND when the FETCH statement does not return a row,
use this statement:

EXEC SQL

WHENEVER NOT FOUND GO TO DATA-NOT-FOUND
END-EXEC.

Your program must anticipate and handle an end-of-data whenever you use a
cursor to fetch a row. For more information about the WHENEVER NOT FOUND
statement, see [“Checking the execution of SQL statements” on page 87.|

Step 4: Execute SQL statements

You execute one of these SQL statements using the cursor:
* A FETCH statement

* A positioned UPDATE statement

* A positioned DELETE statement

Using FETCH statements

Execute a FETCH statement for one of the following purposes:
* To copy data from a row of the result table into one or more host variables

* To position the cursor before you perform a positioned update or positioned
delete operation

The following example shows a FETCH statement that retrieves selected columns
from the employee table:
EXEC SQL
FETCH C1 INTO
:HV-EMPNO, :HV-FIRSTNME, :HV-MIDINIT, :HV-LASTNAME, :HV-SALARY :IND-SALARY
END-EXEC.

The SELECT statement within DECLARE CURSOR statement identifies the result
table from which you fetch rows, but DB2 does not retrieve any data until your
application program executes a FETCH statement.

When your program executes the FETCH statement, DB2 positions the cursor on a
row in the result table. That row is called the current row. DB2 then copies the
current row contents into the program host variables that you specify on the INTO
clause of FETCH. This sequence repeats each time you issue FETCH, until you
process all rows in the result table.

The row that DB2 points to when you execute a FETCH statement depends on
whether the cursor is declared as a scrollable or non-scrollable. See [“Scrollable and

inon-scrollable cursors” on page 109| for more information.

When you query a remote subsystem with FETCH, consider using block fetch for
better performance. For more information see [“Using block fetch in distributed|
lapplications” on page 446] Block fetch processes rows ahead of the current row.
You cannot use a block fetch when you perform a positioned update or delete
operation.

102 Application Programming and SQL Guide

Using positioned UPDATE statements
After your program has executed a FETCH statement to retrieve the current row,
you can use a positioned UPDATE statement to modify the data in that row. An
example of a positioned UPDATE statement is:
EXEC SQL
UPDATE DSN8810.EMP
SET SALARY = 50000

WHERE CURRENT OF C1
END-EXEC.

A positioned UPDATE statement updates the row on which the cursor is
positioned.

A positioned UPDATE statement is subject to these restrictions:

* You cannot update a row if your update violates any unique, check, or
referential constraints.

* You cannot use an UPDATE statement to modify the rows of a created
temporary table. However, you can use an UPDATE statement to modify the
rows of a declared temporary table.

* If the right side of the SET clause in the UPDATE statement contains a fullselect,
that fullselect cannot include a correlated name for a table that is being updated.

* You cannot use an INSERT statement in the FROM clause of a SELECT
statement that defines a cursor that is used in a positioned UPDATE statement.

¢ A positioned UPDATE statement will fail if the value of the security label
column of the row where the cursor is positioned is not equivalent to the
security label value of your user id. If your user id has write down privilege, a
positioned UPDATE statement will fail if the value of the security label column
of the row where the cursor is positioned does not dominate the security label
value of your user id.

Using positioned DELETE statements
After your program has executed a FETCH statement to retrieve the current row,
you can use a positioned DELETE statement to delete that row. A example of a
positioned DELETE statement looks like this:
EXEC SQL

DELETE FROM DSN8810.EMP

WHERE CURRENT OF C1
END-EXEC.

A positioned DELETE statement deletes the row on which the cursor is positioned.

A positioned DELETE statement is subject to these restrictions:

* You cannot use a DELETE statement with a cursor to delete rows from a created
temporary table. However, you can use a DELETE statement with a cursor to
delete rows from a declared temporary table.

* After you have deleted a row, you cannot update or delete another row using
that cursor until you execute a FETCH statement to position the cursor on
another row.

* You cannot delete a row if doing so violates any referential constraints.

* You cannot use an INSERT statement in the FROM clause of a SELECT
statement that defines a cursor that is used in a positioned DELETE statement.

* A positioned DELETE statement will fail if the value of the security label column
of the row where the cursor is positioned is not equivalent to the security label
value of your user id. If your user id has write down privilege, a positioned

Chapter 7. Using a cursor to retrieve a set of rows 103

I DELETE statement will fail if the value of the security label column of the row
I where the cursor is positioned does not dominate the security label value of
[your user id.

Step 5: Close the cursor

If you finish processing the rows of the result table and want to use the cursor
again, issue a CLOSE statement to close the cursor and then issue an OPEN
statement to reopen the cursor. An example of a CLOSE statement looks like this:
EXEC SQL

CLOSE C1
END-EXEC.

When you finish processing the rows of the result table, and the cursor is no
longer needed, you can let DB2 automatically close the cursor when the current
transaction terminates or when your program terminates.

Recommendation: To free the resources that are held by the cursor, close the
cursor explicitly by issuing the CLOSE statement.

| Accessing data by using a rowset-positioned cursor

The basic steps in using a rowset cursor are:
1. Execute a DECLARE CURSOR statement to define the result table on which the
cursor operates. See [“Step 1: Declare the rowset cursor.”|

2. Execute an OPEN CURSOR to make the cursor available to the application. See
[“Step 2: Open the rowset cursor.”|

w

Specify what the program is to do when all rows have been retrieved. See
[“Step 3: Specify what to do at end-of-data for a rowset cursor” on page 105.|

4. Execute multiple SQL statements to retrieve data from the table or modify
selected rows of the table. See [‘Step 4: Execute SQL statements with a rowsef
[cursor” on page 105

5. Execute a CLOSE CURSOR statement to make the cursor unavailable to the
application. See [“Step 5: Close the rowset cursor” on page 109]

| Your program can have several cursors, each of which performs the previous steps.

Step 1: Declare the rowset cursor

To enable a cursor to fetch rowsets, use the WITH ROWSET POSITIONING clause
in the DECLARE CURSOR statement. The following example shows how to
declare a rowset cursor:

EXEC SQL
DECLARE C1 CURSOR WITH ROWSET POSITIONING FOR
SELECT EMPNO, LASTNAME, SALARY
FROM DSN8810.EMP
END-EXEC.

| For restrictions that apply to rowset-positioned cursors and row-positioned cursors,
I see [“Step 1: Declare the cursor” on page 99

Step 2: Open the rowset cursor

To tell DB2 that you are ready to process the first rowset of the result table, execute
the OPEN statement in your program. DB2 then uses the SELECT statement within
DECLARE CURSOR to identify the rows in the result table. For more information
about the OPEN CURSOR process, see [“Step 2: Open the cursor” on page 101.|

104 Application Programming and SQL Guide

Step 3: Specify what to do at end-of-data for a rowset cursor

To determine whether the program has retrieved the last row of data in the result
table, test the SQLCODE field for a value of 100 or the SQLSTATE field for a value
of ’02000’. With a rowset cursor, these codes occur when a FETCH statement
retrieves the last row in the result table. However, when the last row has been
retrieved, the program must still process the rows in the last rowset through that
last row. For an example of end-of-data processing for a rowset cursor, see

IFigure 21 on page 123

To determine the number of retrieved rows, use either of the following values:
* The contents of the SQLERRD(3) field in the SQLCA
¢ The contents of the ROW_COUNT item of GET DIAGNOSTICS

For information about GET DIAGNOSTICS, see [“The GET DIAGNOSTICS|
statement” on page 90.|

If you declare the cursor as dynamic scrollable, and SQLCODE has the value 100,
you can continue with a FETCH statement until no more rows are retrieved.
Additional fetches might retrieve more rows because a dynamic scrollable cursor is
sensitive to updates by other application processes. For information about dynamic
cursors, see [“Types of cursors” on page 109

Step 4: Execute SQL statements with a rowset cursor

You can execute these static SQL statements when you use a rowset cursor:

* A multiple-row FETCH statement that copies a rowset of column values into
either of the following data areas:
— Host variable arrays that are declared in your program
— Dynamically-allocated arrays whose storage addresses are put into an SQL
descriptor area (SQLDA), along with the attributes of the columns that are to
be retrieved

* After either form of the multiple-row FETCH statement, you can issue:
— A positioned UPDATE statement on the current rowset
— A positioned DELETE statement on the current rowset

You must use the WITH ROWSET POSITIONING clause of the DECLARE
CURSOR statement if you plan to use a rowset-positioned FETCH statement.

Using a multiple-row FETCH statement with host variable arrays
The following example shows a FETCH statement that retrieves 20 rows into host
variable arrays that are declared in your program:

EXEC SQL

FETCH NEXT ROWSET FROM C1

FOR 20 ROWS

INTO :HVA-EMPNO, :HVA-LASTNAME, :HVA-SALARY :INDA-SALARY
END-EXEC.

When your program executes a FETCH statement with the ROWSET keyword, the
cursor is positioned on a rowset in the result table. That rowset is called the current
rowset. The dimension of each of the host variable arrays must be greater than or
equal to the number of rows to be retrieved.

Using a multiple-row FETCH statement with a descriptor
Suppose that you want to dynamically allocate the storage needed for the arrays of

column values that are to be retrieved from the employee table. You must:
1. Declare an SQLDA structure and the variables that reference the SQLDA.

Chapter 7. Using a cursor to retrieve a set of rows 105

Dynamically allocate the SQLDA and the arrays needed for the column values.
Set the fields in the SQLDA for the column values to be retrieved.

Open the cursor.

Fetch the rows.

ok wn

Declare the SQLDA: You must first declare the SQLDA structure. The following
SQL INCLUDE statement requests a standard SQLDA declaration:

EXEC SQL INCLUDE SQLDA;

Your program must also declare variables that reference the SQLDA structure, the
SQLVAR structure within the SQLDA, and the DECLEN structure for the precision
and scale if you are retrieving a DECIMAL column. For C programs, the code
looks like this:

struct sqlda *sqldaptr;
struct sqlvar *varptr;
struct DECLEN {
unsigned char precision;
unsigned char scale;

}s

Allocate the SQLDA: Before you can set the fields in the SQLDA for the column
values to be retrieved, you must dynamically allocate storage for the SQLDA
structure. For C programs, the code looks like this:

sqldaptr = (struct sqlda *) malloc (3 * 44 + 16);

The size of the SQLDA is SQLN * 44 + 16, where the value of the SQLN field is the
number of output columns.

Set the fields in the SQLDA: You must set the fields in the SQLDA structure for
your FETCH statement. Suppose you want to retrieve the columns EMPNO,
LASTNAME, and SALARY. The C code to set the SQLDA fields for these columns
looks like this:

strcpy(sqldaptr->sqldaid, "SQLDA");

sqldaptr->sqldabc = 148; /* number bytes of storage allocated for the SQLDA */
sqldaptr->sqin = 3; /* number of SQLVAR occurrences */
sqldaptr->sqld = 3;

varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0])); /* Point to first SQLVAR =%/
varptr->sqltype = 452; /* data type CHAR(6) =/
varptr->sqllen = 6;

varptr->sqldata = (char *) hval;

varptr->sqlind = (short *) indal;

varptr->sqlname.length = 8;

varptr->sqlname.data = X'0000000000000014"; /* bytes 5-8 array size */
varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0]) + 1); /* Point to next SQLVAR =/
varptr->sqltype = 448; /* data type VARCHAR(15) */

varptr->sqllen = 15;
varptr->sqldata = (char *) hva2;
varptr->sqlind = (short *) inda2;
varptr->sqlname.length = 8;

varptr->sqlname.data = X'0000000000000014"; /* bytes 5-8 array size */
varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0]) + 2); /* Point to next SQLVAR =/
varptr->sqltype = 485; /* data type DECIMAL(9,2) */

((struct DECLEN *) &(varptr->sqllen))->precision = 9;

((struct DECLEN *) &(varptr->sqllen))->scale = 2;

varptr->sqldata = (char *) hva3;

varptr->sqlind = (short *) inda3;

varptr->sqlname.length = 8;

varptr->sqlname.data = X'0000000000000014"; /* bytes 5-8 array size */

The SQLDA structure has these fields:

106 Application Programming and SQL Guide

* SQLDABC indicates the number of bytes of storage that are allocated for the
SQLDA. The storage includes a 16-byte header and 44 bytes for each SQLVAR
field. The value is SQLN x 44 + 16, or 148 for this example.

* SQLN is the number of SQLVAR occurrences (or the number of output columns).

* SQLD is the number of variables in the SQLDA that are used by DB2 when
processing the FETCH statement.

* Each SQLVAR occurrence describes a host variable array or buffer into which the
values for a column in the result table are to be returned. Within each SQLVAR:

— SQLTYPE indicates the data type of the column.

— SQLLEN indicates the length of the column. If the data type is DECIMAL,
this field has two parts: the PRECISION and the SCALE.

— SQLDATA points to the first element of the array for the column values. For
this example, assume that your program allocates the dynamic variable arrays
hval, hva2, and hva3, and their indicator arrays indal, inda2, and inda3.

— SQLIND points to the first element of the array of indicator values for the
column. If SQLTYPE is an odd number, this attribute is required. (If SQLTYPE
is an odd number, null values are allowed for the column.)

— SQLNAME has two parts: the LENGTH and the DATA. The LENGTH is 8.
The first two bytes of the DATA field is X’0000". Bytes 5 through 8 of the
DATA field is a binary integer representation of the dimension of the arrays.
For this example, assume that the dimension of each array is 20. In general,
you can vary the number of rows that are to be retrieved.

For information about using the SQLDA in dynamic SQL, see [Chapter 24, “Coding]
idynamic SQL in application programs,” on page 539 For a complete layout of the

SQLDA and the descriptions given by the INCLUDE statement, see Appendix E of
[DB2 SQL Reference

Open the cursor: You can open the cursor only after all of the fields have been set
in the output SQLDA:

EXEC SQL OPEN C1;

Fetch the rows: After the OPEN statement, the program fetches the next rowset:

EXEC SQL
FETCH NEXT ROWSET FROM C1
FOR 20 ROWS
USING DESCRIPTOR :*sqldaptr;

The USING clause of the FETCH statement names the SQLDA that describes the
columns that are to be retrieved.

Using rowset-positioned UPDATE statements

After your program executes a FETCH statement to establish the current rowset,
you can use a positioned UPDATE statement with either of the following clauses:
* Use WHERE CURRENT OF to modify all of the rows in the current rowset

¢ Use FOR ROW n OF ROWSET to modify row 7 in the current rowset

For information about restrictions for a positioned UPDATE, see [“Using positioned|
[UPDATE statements” on page 103

Using the WHERE CURRENT OF clause: An example of a positioned UPDATE
statement that uses the WHERE CURRENT OF clause is:

Chapter 7. Using a cursor to retrieve a set of rows 107

EXEC SQL
UPDATE DSN8810.EMP
SET SALARY = 50000
WHERE CURRENT OF Cl
END-EXEC.

When the UPDATE statement is executed, the cursor must be positioned on a row
or rowset of the result table. If the cursor is positioned on a row, that row is
updated. If the cursor is positioned on a rowset, all of the rows in the rowset are
updated.

Using the FOR ROW n OF ROWSET clause: An example of a positioned
UPDATE statement that uses the FOR ROW n OF ROWSET clause is:
EXEC SQL
UPDATE DSN8810.EMP
SET SALARY = 50000
FOR CURSOR C1 FOR ROW 5 OF ROWSET
END-EXEC.

When the UPDATE statement is executed, the cursor must be positioned on a
rowset of the result table. The specified row (in the example, row 5) of the current
rowset is updated.

Using rowset-positioned DELETE statements

After your program executes a FETCH statement to establish the current rowset,
you can use a positioned DELETE statement with either of the following clauses:
* Use WHERE CURRENT OF to delete all of the rows in the current rowset

* Use FOR ROW n OF ROWSET to delete row 1 in the current rowset

For information about restrictions for a positioned DELETE, see [“Using positioned|
[DELETE statements” on page 103.|

Using the WHERE CURRENT OF clause: An example of a positioned DELETE
statement that uses the WHERE CURRENT OF clause is:
EXEC SQL

DELETE FROM DSN8810.EMP

WHERE CURRENT OF C1
END-EXEC.

When the DELETE statement is executed, the cursor must be positioned on a row
or rowset of the result table. If the cursor is positioned on a row, that row is
deleted, and the cursor is positioned before the next row of its result table. If the
cursor is positioned on a rowset, all of the rows in the rowset are deleted, and the
cursor is positioned before the next rowset of its result table.

Using the FOR ROW n OF ROWSET clause: An example of a positioned
DELETE statement that uses the FOR ROW n OF ROWSET clause is:
EXEC SQL

DELETE FROM DSN8810.EMP

FOR CURSOR C1 FOR ROW 5 OF ROWSET
END-EXEC.

When the DELETE statement is executed, the cursor must be positioned on a
rowset of the result table. The specified row of the current rowset is deleted, and
the cursor remains positioned on that rowset. The deleted row (in the example,
row 5 of the rowset) cannot be retrieved or updated.

108 Application Programming and SQL Guide

Number of rows in a rowset

The number of rows in a rowset is determined either explicitly or implicitly. To
explicitly set the size of a rowset, use the FOR n ROWS clause in the FETCH
statement. If a FETCH statement specifies the ROWSET keyword, and not the FOR
n ROWS clause, the size of the rowset is implicitly set to the size of the rowset that
was most recently specified in a prior FETCH statement. If a prior FETCH
statement did not specify the FOR n ROWS clause or the ROWSET keyword, the
size of the current rowset is implicitly set to 1. For examples of rowset positioning,
see [Table 8 on page 114

Step 5: Close the rowset cursor

If you finish processing the rows of the result table and want to use the cursor
again, issue a CLOSE statement to close the cursor and then issue an OPEN
statement to reopen the cursor.

When you finish processing the rows of the result table, and you no longer need
the cursor, you can let DB2 automatically close the cursor when the current
transaction terminates or when your program terminates.

Recommendation: To free the resources held by the cursor, close the cursor
explicitly by issuing the CLOSE statement.

Types of cursors

You can declare cursors, both row-positioned and rowset-positioned, as scrollable
or not scrollable, held or not held, and returnable or not returnable. The following
sections discuss these characteristics:

* [“Scrollable and non-scrollable cursors”|

* [“Held and non-held cursors” on page 118§

In addition, you can declare a returnable cursor in a stored procedure by including
the WITH RETURN clause; the cursor can return result sets to a caller of the stored
procedure. For information about returnable cursors, see[Chapter 25, “Using stored|
forocedures for client/server processing,” on page 573.|

Scrollable and non-scrollable cursors

When you declare a cursor, you tell DB2 whether you want the cursor to be
scrollable or non-scrollable by including or omitting the SCROLL clause. This
clause determines whether the cursor moves sequentially forward through the
result table or can move randomly through the result table.

Using a non-scrollable cursor

The simplest type of cursor is a non-scrollable cursor. A non-scrollable cursor can
be either row-positioned or rowset-positioned. A row-positioned non-scrollable
cursor moves forward through its result table one row at a time. Similarly, a
rowset-positioned non-scrollable cursor moves forward through its result table one
rowset at a time.

A non-scrollable cursor always moves sequentially forward in the result table.
When the application opens the cursor, the cursor is positioned before the first row
(or first rowset) in the result table. When the application executes the first FETCH,
the cursor is positioned on the first row (or first rowset). When the application
executes subsequent FETCH statements, the cursor moves one row ahead (or one
rowset ahead) for each FETCH. After each FETCH statement, the cursor is
positioned on the row (or rowset) that was fetched.

Chapter 7. Using a cursor to retrieve a set of rows 109

After the application executes a positioned UPDATE or positioned DELETE
statement, the cursor stays at the current row (or rowset) of the result table. You
cannot retrieve rows (or rowsets) backward or move to a specific position in a
result table with a non-scrollable cursor.

Using a scrollable cursor

To make a cursor scrollable, you declare it as scrollable. A scrollable cursor can be
either row-positioned or rowset-positioned. To use a scrollable cursor, you execute
FETCH statements that indicate where you want to position the cursor. For

examples of FETCH statements that position a cursor for both rows and rowsets,
see [Table 8 on page 114}

If you want to order the rows of the cursor’s result set, and you also want the
cursor to be updatable, you need to declare the cursor as scrollable, even if you
use it only to retrieve rows (or rowsets) sequentially. You can use the ORDER BY
clause in the declaration of an updatable cursor only if you declare the cursor as
scrollable.

Declaring a scrollable cursor: To indicate that a cursor is scrollable, you declare it
with the SCROLL keyword. The following examples show a characteristic of
scrollable cursors: the sensitivity.

Figure 12| shows a declaration for an insensitive scrollable cursor.

EXEC SQL DECLARE C1 INSENSITIVE SCROLL CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8810.DEPT
ORDER BY DEPTNO

END-EXEC.

Figure 12. Declaration for an insensitive scrollable row cursor

Declaring a scrollable cursor with the INSENSITIVE keyword has the following

effects:

e The size, the order of the rows, and the values for each row of the result table
do not change after the application opens the cursor.

* The result table is read-only. Therefore, you cannot declare the cursor with the

FOR UPDATE clause, and you cannot use the cursor for positioned update or
delete operations.

Figure 13[shows a declaration for a sensitive static scrollable cursor.

EXEC SQL DECLARE C2 SENSITIVE STATIC SCROLL CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8810.DEPT
ORDER BY DEPTNO

END-EXEC.

Figure 13. Declaration for a sensitive static scrollable row cursor

Declaring a cursor as SENSITIVE STATIC has the following effects:

* When the application executes positioned UPDATE and DELETE statements
with the cursor, those changes are visible in the result table.

* When the current value of a row no longer satisfies the SELECT statement that
was used in the cursor declaration, that row is no longer visible in the result
table.

* When a row of the result table is deleted from the underlying table, that row is
no longer visible in the result table.

110 Application Programming and SQL Guide

¢ Changes that are made to the underlying table by other cursors or other
application processes can be visible in the result table, depending on whether
the FETCH statements that you use with the cursor are FETCH INSENSITIVE or
FETCH SENSITIVE statements.

Figure 14 shows a declaration for a sensitive dynamic scrollable cursor.

EXEC SQL DECLARE C2 SENSITIVE DYNAMIC SCROLL CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8810.DEPT
ORDER BY DEPTNO

END-EXEC.

Figure 14. Declaration for a sensitive dynamic scrollable cursor

Declaring a cursor as SENSITIVE DYNAMIC has the following effects:

* When the application executes positioned UPDATE and DELETE statements
with the cursor, those changes are visible. In addition, when the application
executes INSERT, UPDATE, and DELETE statements (within the application but
outside the cursor), those changes are visible.

¢ All committed inserts, updates, and deletes by other application processes are
visible.

* Because the FETCH statement executes against the base table, the cursor needs
no temporary result table. When you define a cursor as SENSITIVE DYNAMIC,
you cannot specify the INSENSITIVE keyword in a FETCH statement for that
cursor.

* If you specify an ORDER BY clause for a SENSITIVE DYNAMIC cursor, DB2
might choose an index access path if the ORDER BY is fully satisfied by an
existing index. However, a dynamic scrollable cursor that is declared with an
ORDER BY clause is not updatable.

Static scrollable cursor: Both the INSENSITIVE cursor and the SENSITIVE
STATIC cursor follow the static cursor model:

* The size of the result table does not grow after the application opens the cursor.

Rows that are inserted into the underlying table are not added to the result
table.

* The order of the rows does not change after the application opens the cursor.
If the cursor declaration contains an ORDER BY clause, and the columns that are

in the ORDER BY clause are updated after the cursor is opened, the order of the
rows in the result table does not change.

Dynamic scrollable cursor: When you declare a cursor as SENSITIVE, you can

declare it either STATIC or DYNAMIC. The SENSITIVE DYNAMIC cursor follows

the dynamic cursor model:

* The size and contents of the result table can change with every fetch.
The base table can change while the cursor is scrolling on it. If another
application process changes the data, the cursor sees the newly changed data
when it is committed. If the application process of the cursor changes the data,
the cursor sees the newly changed data immediately.

* The order of the rows can change after the application opens the cursor.

If the cursor declaration contains an ORDER BY clause, and columns that are in
the ORDER BY clause are updated after the cursor is opened, the order of the
rows in the result table changes.

Chapter 7. Using a cursor to retrieve a set of rows 111

Determining attributes of a cursor by checking the SQLCA: After you open a
cursor, you can determine the following attributes of the cursor by checking the
following SQLWARN and SQLERRD fields of the SQLCA:

SQLWARN1
Indicates whether the cursor is scrollable or non-scrollable.

SQLWARN4
Indicates whether the cursor is insensitive (I), sensitive static (S), or sensitive
dynamic (D).

SQLWARNS5
Indicates whether the cursor is read-only, readable and deletable, or readable,

deletable, and updatable.

SQLERRD(1)
The number of rows in the result table of a cursor when the cursor position is
after the last row (when SQLCODE is equal to +100). This field is not set for
dynamic scrollable cursors.

SQLERRD(2)
The number of rows in the result table of a cursor when the cursor position is
after the last row (when SQLCODE is equal to +100). This field is not set for
dynamic scrollable cursors.

SQLERRD(3)
The number of rows in the result table of an INSERT when the SELECT
statement of the cursor contains the INSERT statement.

If the OPEN statement executes with no errors or warnings, DB2 does not set
SQLWARNO when it sets SQLWARN1, SQLWARN4, or SQLWARNS. See Appendix
D of [DB2 SQL Referencd for specific information about fields in the SQLCA.

Determining attributes of a cursor by using the GET DIAGNOSTICS
statement: After you open a cursor, you can determine the following attributes of
the cursor by checking these GET DIAGNOSTICS items:

DB2_SQL_ATTR_CURSOR_HOLD
Indicates whether the cursor can be held open across commits (Y or N)

DB2_SQL_ATTR_CURSOR_ROWSET
Indicates whether the cursor can use rowset positioning (Y or N)

DB2_SQL_ATTR_CURSOR_SCROLLABLE
Indicates whether the cursor is scrollable (Y or N)

DB2_SQL_ATTR_CURSOR_SENSITIVITY
Indicates whether the cursor is asensitive, insensitive, or sensitive to changes
that are made by other processes (A, I, or S)

DB2_SQL_ATTR_CURSOR_TYPE
Indicates whether the cursor is declared static (S for INSENSITIVE or
SENSITIVE STATIC) or dynamic (D for SENSITIVE DYNAMIC)

For more information about the GET DIAGNOSTICS statement, see [“The GET]
[DIAGNOSTICS statement” on page 90.|

Retrieving rows with a scrollable cursor: When you open any cursor, the cursor
is positioned before the first row of the result table. You move a scrollable cursor
around in the result table by specifying a fetch orientation keyword in a FETCH
statement. A fetch orientation keyword indicates the absolute or relative position of
the cursor when the FETCH statement is executed. [Table 7 on page 113|lists the

112 Application Programming and SQL Guide

fetch orientation keywords that you can specify and their meanings. These
keywords apply to both row-positioned scrollable cursors and rowset-positioned
scrollable cursors.

Table 7. Positions for a scrollable cursor

Keyword in FETCH statement Cursor position when FETCH is executed’

BEFORE Before the first row

FIRST or ABSOLUTE +1 On the first row

LAST or ABSOLUTE -1 On the last row

AFTER After the last row

ABSOLUTE? On an absolute row number, from before the first
row forward or from after the last row backward

RELATIVE? On the row that is forward or backward a relative
number of rows from the current row

CURRENT On the current row

PRIOR or RELATIVE -1 On the previous row

NEXT On the next row (default)

Notes:

1. The cursor position applies to both row position and rowset position, for example, before
the first row or before the first rowset.

2. ABSOLUTE and RELATIVE are described in greater detail in the discussion of FETCH in
Chapter 5 of IDB2 SQL Referencel

Example: To use the cursor that is declared in [Figure 12 on page 110| to fetch the
fifth row of the result table, use a FETCH statement like this:

EXEC SQL FETCH ABSOLUTE +5 C1 INTO :HVDEPTNO, :DEPTNAME, :MGRNO;

To fetch the fifth row from the end of the result table, use this FETCH statement:
EXEC SQL FETCH ABSOLUTE -5 C1 INTO :HVDEPTNO, :DEPTNAME, :MGRNO;

Determining the number of rows in the result table for a static scrollable

cursor: You can determine how many rows are in the result table of an
INSENSITIVE or SENSITIVE STATIC scrollable cursor. To do that, execute a
FETCH statement, such as FETCH AFTER, that positions the cursor after the last
row. You can then examine the fields SQLERRD(1) and SQLERRD(2) in the SQLCA
(fields sqlerrd[0] and sqlerrd[1] for C and C++) for the number of rows in the
result table. Alternatively, you can use the GET DIAGNOSTICS statement to
retrieve the number of rows in the ROW_COUNT statement item.

FETCH statement interaction between row and rowset positioning: When you
declare a cursor with the WITH ROWSET POSITIONING clause, you can intermix
row-positioned FETCH statements with rowset-positioned FETCH statements. For
information about using a multiple-row FETCH statement, see|”Using a|
multiple-row FETCH statement with host variable arrays” on page 105,

[Table 8 on page 114 shows the interaction between row and rowset positioning for
a scrollable cursor. Assume that you declare the scrollable cursor on a table with 15
rOWS.

Chapter 7. Using a cursor to retrieve a set of rows 113

Table 8. Interaction between row and rowset positioning for a scrollable cursor

Keywords in FETCH statement

Cursor position when FETCH is executed

FIRST

On row 1

FIRST ROWSET

On a rowset of size 1, consisting of row 1

FIRST ROWSET FOR 5 ROWS

On a rowset of size 5, consisting of rows 1, 2, 3, 4,
and 5

CURRENT ROWSET

On a rowset of size 5, consisting of rows 1, 2, 3, 4,
and 5

CURRENT

On row 1

NEXT (default)

On row 2

NEXT ROWSET

On a rowset of size 1, consisting of row 3

NEXT ROWSET FOR 3 ROWS

On a rowset of size 3, consisting of rows 4, 5, and
6

NEXT ROWSET

On a rowset of size 3, consisting of rows 7, 8, and
9

LAST

On row 15

LAST ROWSET FOR 2 ROWS

On a rowset of size 2, consisting of rows 14 and
15

PRIOR ROWSET On a rowset of size 2, consisting of rows 12 and
13
ABSOLUTE 2 On row 2

ROWSET STARTING AT ABSOLUTE 2
FOR 3 ROWS

On a rowset of size 3, consisting of rows 2, 3, and
4

RELATIVE 2

On row 4

ROWSET STARTING AT ABSOLUTE 2
FOR 4 ROWS

On a rowset of size 4, consisting of rows 2, 3, 4,
and 5

RELATIVE -1

On row 1

ROWSET STARTING AT ABSOLUTE 3
FOR 2 ROWS

On a rowset of size 2, consisting of rows 3 and 4

ROWSET STARTING AT RELATIVE 4

On a rowset of size 2, consisting of rows 7 and 8

PRIOR

On row 6

ROWSET STARTING AT ABSOLUTE 13
FOR 5 ROWS

On a rowset of size 3, consisting of rows 13, 14,
and 15

FIRST ROWSET

On a rowset of size 5, consisting of rows 1, 2, 3, 4,
and 5

Note: The FOR n ROWS clause and the ROWSET clause are described in greater detail in
the discussion of FETCH in Chapter 5 of [DB2 SQL Reference}

Comparison of scrollable cursors

When you declare a cursor as SENSITIVE STATIC, changes that other processes or
cursors make to the underlying table can be visible to the result table of the cursor.
Whether those changes are visible depends on whether you specify SENSITIVE or
INSENSITIVE when you execute FETCH statements with the cursor. When you
specify FETCH INSENSITIVE, changes that other processes or other cursors make
to the underlying table are not visible in the result table. When you specify FETCH
SENSITIVE, changes that other processes or cursors make to the underlying table
are visible in the result table.

114 Application Programming and SQL Guide

When you declare a cursor as SENSITIVE DYNAMIC, changes that other processes
or cursors make to the underlying table are visible to the result table after the
changes are committed.

summarizes the sensitivity values and their effects on the result table of a
scrollable cursor.

Table 9. How sensitivity affects the result table for a scrollable cursor

DECLARE
sensitivity FETCH INSENSITIVE FETCH SENSITIVE
INSENSITIVE No changes to the underlying Not valid.

table are visible in the result
table. Positioned UPDATE and
DELETE statements using the
cursor are not allowed.

SENSITIVE STATIC Only positioned updates and All updates and deletes are visible

deletes that are made by the in the result table. Inserts made by
cursor are visible in the result other processes are not visible in
table. the result table.
SENSITIVE Not valid. All committed changes are visible
DYNAMIC in the result table, including

updates, deletes, inserts, and
changes in the order of the rows.

Holes in the result table of a scrollable cursor
In some situations, you might not be able to fetch a row from the result table of a
scrollable cursor, depending on how the cursor is declared:

* Scrollable cursors that are declared as INSENSITIVE or SENSITIVE STATIC
follow a static model, which means that DB2 determines the size of the result
table and the order of the rows when you open the cursor.

Deleting or updating rows after a static cursor is open can result in holes in the
result table, which means that the result table does not shrink to fill the space of
deleted rows or the space of rows that have been updated and no longer satisfy
the search condition. You cannot access a delete hole or an update hole of a
static cursor, although you can remove holes in specific situations; see
[“Removing a delete hole or an update hole” on page 117]

* Scrollable cursors that are declared as SENSITIVE DYNAMIC follow a dynamic
model, which means that the size and contents of the result table, and the order
of the rows, can change after you open the cursor.

A dynamic cursor scrolls directly on the base table. If the current row of the
cursor is deleted or if it is updated so that it no longer satisfies the search
condition, and the next cursor operation is FETCH CURRENT, then DB2 issues
an SQL warning.

The following examples demonstrate how delete and update holes can occur when
you use a SENSITIVE STATIC scrollable cursor.

Creating a delete hole with a static scrollable cursor: Suppose that table A

consists of one integer column, COL1, which has the values shown in
-ae 116

Chapter 7. Using a cursor to retrieve a set of rows 115

AL WN -

Figure 15. Values for COL1 of table A

Now suppose that you declare the following SENSITIVE STATIC scrollable cursor,
which you use to delete rows from A:

EXEC SQL DECLARE C3 SENSITIVE STATIC SCROLL CURSOR FOR
SELECT COL1
FROM A
FOR UPDATE OF COL1;

Now you execute the following SQL statements:

EXEC SQL OPEN C3;
EXEC SQL FETCH ABSOLUTE +3 C3 INTO :HVCOL1;
EXEC SQL DELETE FROM A WHERE CURRENT OF C3;

The positioned delete statement creates a delete hole, as shown in

EXEC SQL
FETCH ABSOLUTE +3 C3
INTO :HVCOL1,

EXEC SQL
DELETE FROM A

WHERE CURRENT OF C3;
o >

— Delete hole

AP OON -

aRAMN -

Figure 16. Creating a delete hole

After you execute the positioned delete statement, the third row is deleted from
the result table, but the result table does not shrink to fill the space that the deleted
row creates.

Creating an update hole with a static scrollable cursor: Suppose that you declare
the following SENSITIVE STATIC scrollable cursor, which you use to update rows
in A:
EXEC SQL DECLARE C4 SENSITIVE STATIC SCROLL CURSOR FOR

SELECT COL1

FROM A
WHERE COL1<6;

Now you execute the following SQL statements:

EXEC SQL OPEN C4;
UPDATE A SET COL1=COL1+1;

116 Application Programming and SQL Guide

The searched UPDATE statement creates an update hole, as shown in

EXEC SQL OPEN C4;
EXEC SQL
UPDATE A

SET COL1=COL1+1;
o P

AR WN =
oL wN

<4——Update hole

Figure 17. Creating an update hole

After you execute the searched UPDATE statement, the last row no longer qualifies
for the result table, but the result table does not shrink to fill the space that the
disqualified row creates.

Removing a delete hole or an update hole: You can remove a delete hole or an
update hole in specific situations.

If you try to fetch from a delete hole, DB2 issues an SQL warning. If you try to
update or delete a delete hole, DB2 issues an SQL error. You can remove a delete
hole only by opening the scrollable cursor, setting a savepoint, executing a
positioned DELETE statement with the scrollable cursor, and rolling back to the
savepoint.

If you try to fetch from an update hole, DB2 issues an SQL warning. If you try to
delete an update hole, DB2 issues an SQL error. However, you can convert an
update hole back to a result table row by updating the row in the base table, as
shown in [Figure 18 on page 118} You can update the base table with a searched
UPDATE statement in the same application process, or a searched or positioned
UPDATE statement in another application process. After you update the base table,
if the row qualifies for the result table, the update hole disappears.

Chapter 7. Using a cursor to retrieve a set of rows 117

EXEC SQL OPEN C4;
EXEC SQL
UPDATE A

SET COL1=COL1+1;
o >

A WN -

<4——Update hole

EXEC SQL UPDATE A
SET COL1=COL1-1;

OBRWN |[¢—eITOARWON

<——Update hole
disappears

Figure 18. Removing an update hole

A hole becomes visible to a cursor when a cursor operation returns a non-zero
SQLCODE. The point at which a hole becomes visible depends on the following
factors:

¢ Whether the scrollable cursor creates the hole
¢ Whether the FETCH statement is FETCH SENSITIVE or FETCH INSENSITIVE

If the scrollable cursor creates the hole, the hole is visible when you execute a
FETCH statement for the row that contains the hole. The FETCH statement can be
FETCH INSENSITIVE or FETCH SENSITIVE.

If an update or delete operation outside the scrollable cursor creates the hole, the
hole is visible at the following times:

* If you execute a FETCH SENSITIVE statement for the row that contains the hole,
the hole is visible when you execute the FETCH statement.

* If you execute a FETCH INSENSITIVE statement, the hole is not visible when
you execute the FETCH statement. DB2 returns the row as it was before the
update or delete operation occurred. However, if you follow the FETCH
INSENSITIVE statement with a positioned UPDATE or DELETE statement, the
hole becomes visible.

Held and non-held cursors

When you declare a cursor, you tell DB2 whether you want the cursor to be held
or not held by including or omitting the WITH HOLD clause. A held cursor, which
is declared with the WITH HOLD clause, does not close after a commit operation.
A cursor that is not held closes after a commit operation.

After a commit operation, the position of a held cursor depends on its type:

* A non-scrollable cursor that is held is positioned after the last retrieved row and
before the next logical row. The next row can be returned from the result table
with a FETCH NEXT statement.

118 Application Programming and SQL Guide

* A static scrollable cursor that is held is positioned on the last retrieved row. The
last retrieved row can be returned from the result table with a FETCH
CURRENT statement.

* A dynamic scrollable cursor that is held is positioned after the last retrieved row
and before the next logical row. The next row can be returned from the result
table with a FETCH NEXT statement. DB2 returns SQLCODE +231 for a FETCH
CURRENT statement.

A held cursor can close when:

* You issue a CLOSE cursor, ROLLBACK, or CONNECT statement

* You issue a CAF CLOSE function call or an RRSAF TERMINATE THREAD
function call

¢ The application program terminates.

If the program abnormally terminates, the cursor position is lost. To prepare for
restart, your program must reposition the cursor.

The following restrictions apply to cursors that are declared WITH HOLD:
* Do not use DECLARE CURSOR WITH HOLD with the new user signon from a
DB2 attachment facility, because all open cursors are closed.

* Do not declare a WITH HOLD cursor in a thread that might become inactive. If
you do, its locks are held indefinitely.

— IMS
You cannot use DECLARE CURSOR...WITH HOLD in message processing
programs (MPP) and message-driven batch message processing (BMP). Each
message is a new user for DB2; whether or not you declare them using WITH
HOLD, no cursors continue for new users. You can use WITH HOLD in
non-message-driven BMP and DL/I batch programs.

— CICS
In CICS applications, you can use DECLARE CURSOR...WITH HOLD to
indicate that a cursor should not close at a commit or sync point. However,
SYNCPOINT ROLLBACK closes all cursors, and end-of-task (EOT) closes all
cursors before DB2 reuses or terminates the thread. Because
pseudo-conversational transactions usually have multiple EXEC CICS
RETURN statements and thus span multiple EOTs, the scope of a held cursor
is limited. Across EOTs, you must reopen and reposition a cursor declared
WITH HOLD, as if you had not specified WITH HOLD.

You should always close cursors that you no longer need. If you let DB2 close
a CICS attachment cursor, the cursor might not close until the CICS
attachment facility reuses or terminates the thread.

The following cursor declaration causes the cursor to maintain its position in the
DSN8810.EMP table after a commit point:

EXEC SQL
DECLARE EMPLUPDT CURSOR WITH HOLD FOR
SELECT EMPNO, LASTNAME, PHONENO, JOB, SALARY, WORKDEPT

Chapter 7. Using a cursor to retrieve a set of rows 119

FROM DSN8810.EMP

WHERE WORKDEPT < 'DI11'

ORDER BY EMPNO
END-EXEC.

Examples of using cursors

The examples in this section show the SQL statements that you include in a
COBOL program to define and use cursors in the following ways:

» Non-scrollable cursor for row-positioned updates; see [Figure 19 on page 121|

» Scrollable cursor to retrieve rows backward; see [Figure 20 on page 122,

» Non-scrollable cursor for rowset-positioned updates; see[Figure 21 on page 123|

* Scrollable cursor for rowset-positioned operations; see [Figure 22 on page 124}

[Figure 19 on page 121{ shows how to update a row by using a cursor.

120 Application Programming and SQL Guide

kkhkkkkhkkhkkhkkhkhkhkkhhkkhkhkkhhkkhhkhkhkkhkhkkhhkkhkhkhkkhkkhkhkkhkhkkhkkkkkkx
* Declare a cursor that will be used to update =

* the JOB column of the EMP table. *
R R R R R R L R R L R R L S R L R XX A KA *A*Nhk*hkhhkhdhhhhhhhhkhkkx
EXEC SQL

DECLARE THISEMP CURSOR FOR
SELECT EMPNO, LASTNAME,
WORKDEPT, JOB
FROM DSN8810.EMP
WHERE WORKDEPT = 'D11'
FOR UPDATE OF JOB

END-EXEC.
kkhkkkkhkkhkkhkkhhkkkhhkkhkhkkhhkkhhkhhkkhhkkhhkkhhkhkhkkhkhkkhhkkhhkkkkkx
* Open the cursor *
kkhkkkkhkkhkkhkkhkkhkkhhkkhkhkkhhkkhhkhkhhkkhkhkkhhkkhhkhkhkkhkhkkhkhkkhkkkkkkx

EXEC SQL

OPEN THISEMP

END-EXEC.

KAk AhkhkAhhhhhhhdhhdhhdhhhhdhhhhdrhdrhdhhhhhdrhdrhdxx
* Indicate what action to take when all rows *
* in the result table have been fetched. *
kkhkkkkhkkhkkhkkhhkkhkkhhkkhkhkkhhkkhhkhkhkkhkhkkhhkkhhkhkkhkkhkhkkhkhkkhkkkkk,kx
EXEC SQL

WHENEVER NOT FOUND
GO TO CLOSE-THISEMP
END-EXEC.
kkhkkkkhkkhkhkkhhkkhkkhhkkhkhkkhhkkhhkhkhkkhkhkkhhkkhhkhkhkkhkhkkhkhkkhhkkkkkx
* Fetch a row to position the cursor. *
kkhkkkkhkkhkkkkhhkkhkkhhkkhkkhkkhhkkhhkhkhkkhkhkkhhkkhhkkhkkhkhkkhkhkkhkkkkkk%x
EXEC SQL
FETCH FROM THISEMP
INTO :EMP-NUM, :NAMEZ2,
:DEPT, :JOB-NAME
END-EXEC.

EE R R R R R R o e e e

* Update the row where the cursor is positioned. *

EXEC SQL
UPDATE DSN8810.EMP

SET JOB = :NEW-JOB

WHERE CURRENT OF THISEMP
END-EXEC.

EE R

* Branch back to fetch and process the next row. *
khkkkkhkkkhkkhkkkhhkkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhkkhkhkkhhkkhkkkkk,%x

Kk kk ko ok ok ok ok ok ok ok k% Fokkkokokk ko ok ok kkok ok ko ok k ko k4 KhkRKRKKK
* Close the cursor *
Khhkkhhkkhhkhhhhhkhhhkhhhhhhhdhhhhrhhhhhhhhhhhhhhdrhhrhhrd
CLOSE-THISEMP.
EXEC SQL
CLOSE THISEMP
END-EXEC.

Figure 19. Performing cursor operations with a non-scrollable cursor

[Figure 20 on page 122 shows how to retrieve data backward with a cursor.

Chapter 7. Using a cursor to retrieve a set of rows

121

khkkhkkhkhkhkhkhkhkkhhhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhhhhhdhhhhhhhhhhhhkhxx
* Declare a cursor to retrieve the data backward *
* from the EMP table. The cursor has access to =

* changes by other processes. *
khhkkhkhkhkhhhkdhhkdhhdhhhhhhhdhhhhdhhhrhhhhhhkdhhdrrdxx
EXEC SQL

DECLARE THISEMP SENSITIVE STATIC SCROLL CURSOR FOR
SELECT EMPNO, LASTNAME, WORKDEPT, JOB
FROM DSN8810.EMP

END-EXEC.
KRR AR AR AR AR A IR A A A AR AT ***
* Open the cursor *
khkkkkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhkhkhhhhhhhhhhkkhkxx

EXEC SQL

OPEN THISEMP

END-EXEC.
dkhkkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhhkhhhdhdhdhdhdhhdhdhdhhdhhhhhhhhhhhdkhdx
* Indicate what action to take when all rows *
* in the result table have been fetched. *
khkkkkhkhkkhkhkkkhkhhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhhkhhhhkhhhhhhhhhhhhhxx

EXEC SQL

WHENEVER NOT FOUND GO TO CLOSE-THISEMP

END-EXEC.

khkkhkhkkhkhkhkhkhkhkhhkhhhhhhhkhhhddhdhdhdhdhdhdhdhhdhhhhhhhhhhhdhdx
* Position the cursor after the last row of the =*

* result table. This FETCH statement cannot *
* include the SENSITIVE or INSENSITIVE keyword =
* and cannot contain an INTO clause. *
khkkhkhkhkhkhkhkhkhkhkhhkhhhhhhhkhkhhhdhhhhdhhdhdhdhhdhhdhhhhhhhhhdhxx

EXEC SQL

FETCH AFTER FROM THISEMP

END-EXEC.
dhkkhkhkkhhkhkhhhhhhhhhhhhhhhdhhhhdhdhhhdhhhdhhhhhhhhhhdhdddxx
* Fetch the previous row in the table. *
AKXk hhhhhhhhhhhhhhhhhhhhhhhkhkhkhkhkkhkhkkkhdxd*d*x

EXEC SQL

FETCH SENSITIVE PRIOR FROM THISEMP
INTO :EMP-NUM, :NAME2, :DEPT, :J0B-NAME

END-EXEC.
hhkkhkhkhhhkhhhhhhhhhhhhhhhhhdhhdhdhhhhdhhhhhhhhhhhhdhdxddx
* Check that the fetched row is not a hole *

* (SQLCODE +222). If not, print the contents. *
kkhkkkkhkkkkhkkkhhkkkhhkkkhhkkhkkhkkhhkkhhkkhkhkkhhkkhkhkkhkkhkhkkhkhkkhkkkkk,k%x
IF SQLCODE IS GREATER THAN OR EQUAL TO O AND
SQLCODE IS NOT EQUAL TO +100 AND
SQLCODE IS NOT EQUAL TO +222 THEN
PERFORM PRINT-RESULTS.

kkhkkkkhkkhkhkkhkhkkhhkkhkkhkhhkhhkhkhhkhkhkkhhkkhhkhkhkkhkhkkhhkkhhkkkkkx
* Branch back to fetch the previous row. *

LR R

R R e e e

* Close the cursor *
""""""" e X
CLOSE-THISEMP.
EXEC SQL
CLOSE THISEMP
END-EXEC.

Figure 20. Performing cursor operations with a SENSITIVE STATIC scrollable cursor

[Figure 21 on page 123 shows how to update an entire rowset with a cursor.

122 Application Programming and SQL Guide

EE R

* Declare a rowset cursor to update the JOB *

* column of the EMP table. *

khkkhhkkhhkhkhkhhhkhhkhhhhhhhhrhhxsk khhkkkhhhkkhhhkhhhhhhhkrhdkx
EXEC SQL

DECLARE EMPSET CURSOR
WITH ROWSET POSITIONING FOR
SELECT EMPNO, LASTNAME, WORKDEPT, JOB
FROM DSN8810.EMP
WHERE WORKDEPT = 'D11'
FOR UPDATE OF JOB
END-EXEC.

EE R

* Open the cursor. *
kkhkkkkhkkhkkhkkhkkhkkhhkkhkhkkhhkkhhkhkhhkkhkhkkhhkkhhkhkhkkhkhkkhkhkkhkkkkkkx
EXEC SQL
OPEN EMPSET
END-EXEC.

dhkkhkhkhkhkhkhhhhhhhhhhhhhhhhdhdhhdhdhdhhdhhhhhhhhhhhhhhddddxx
* Indicate what action to take when end-of-data =*

* occurs in the rowset being fetched. *
kkhkkkkhkkhkkhkkhhkkhkkhhkkhkhkkhhkkhhkhkhkkhkhkkhhkkhhkhkkhkkhkhkkhkhkkhkkkkk,kx
EXEC SQL

WHENEVER NOT FOUND
GO TO CLOSE-EMPSET
END-EXEC.
kkhkkkkhkkhkhkkhhkkhkkhhkkhkhkkhhkkhhkhkhkkhkhkkhhkkhhkhkhkkhkhkkhkhkkhhkkkkkx
* Fetch next rowset to position the cursor. *
kkhkkkkhkkhkkkkhhkkhkkhhkkhkkhkkhhkkhhkhkhkkhkhkkhhkkhhkkhkkhkhkkhkhkkhkkkkkk%x
EXEC SQL
FETCH NEXT ROWSET FROM EMPSET
FOR :SIZE-ROWSET ROWS
INTO :HVA-EMPNO, :HVA-LASTNAME,
:HVA-WORKDEPT, :HVA-JOB
END-EXEC.

kkhkkkkhkkhkkhkkkhkkhkkhhkkhkkhkkhhkkhhkkhkkhkhkkhhkkhkkkhkkhkhkkhkhkkhkkkkkk%x
* Update rowset where the cursor is positioned. =
khkkkhkkkhkkhhkhkhhkhhhkkhhhkhhhhhhhhhhhdhhdhrhhhkhhhkdhhdxxdxx
UPDATE-ROWSET.
EXEC SQL
UPDATE DSN8810.EMP
SET JOB = :NEW-JOB
WHERE CURRENT OF EMPSET
END-EXEC.
END-UPDATE-ROWSET.

KA IIAAIAA AR A Ak hhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhrrdx

* Branch back to fetch the next rowset. *
khkkkkkkkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhkhkhhhkhhhhhhhhhhhkkkhxx

KAk kAkhAhhhhhhhdhhhhhhhdhhdhhhhdrhdrhhhhhhdrhdrrdxx
* Update the remaining rows in the current *
* rowset and close the cursor. *
kkhkkkkhkkhkkhkkkhkkhkkhhkkhkkhkkhhkkhhkhkhhkkhkhkkhhkkhhkkhkkhkhkkhkhkkhkkkkkk*x
CLOSE-EMPSET.

PERFORM UPDATE-ROWSET.

EXEC SQL

CLOSE EMPSET
END-EXEC.

Figure 21. Performing positioned update with a rowset cursor

[Figure 22 on page 124 shows how to update specific rows with a rowset cursor.

Chapter 7. Using a cursor to retrieve a set of rows

123

kkhkkkkkkkhkkhkhkkhhkkhhkkhkhkkhkhkkhkhkhkhhkhkhkkhkhkkhhkhkhkkhkhkkhkhkkhkhkkkkkkx
* Declare a static scrollable rowset cursor. *
kkhkkkkhkkkkhkkhhkkkhhkkkhhkkkhkkhkhkkhkhkhkhhkkhkkhkkhhkkhkhkkhkkhkhkkhhkkhkkkkkk%x
EXEC SQL
DECLARE EMPSET SENSITIVE STATIC SCROLL CURSOR
WITH ROWSET POSITIONING FOR
SELECT EMPNO, WORKDEPT, JOB
FROM DSN8810.EMP
FOR UPDATE OF JOB
END-EXEC.

R e e e e e e e R

* Open the cursor. *
kkhkkkkhkkhkhkkhkhkkhhkkhhkhkhkkhkhkkhkhkhkhhkhkhkkhhkkhhkhkhkkhkhkkhkhkkhkkkhkkkkx
EXEC SQL
OPEN EMPSET
END-EXEC.

EE R R R R R R R R R R R R R R R R

* Fetch next rowset to position the cursor. *
KhKAhkAA kA khAhhhhdhhddhdhhhkhdhkhdhhdhhhhhhhdhhdrhdrhrxdx
EXEC SQL
FETCH SENSITIVE NEXT ROWSET FROM EMPSET
FOR :SIZE-ROWSET ROWS
INTO :HVA-EMPNO,
:HVA-WORKDEPT :INDA-WORKDEPT,
:HVA-JOB :INDA-JOB
END-EXEC.
kkhkkkkhkkkhkkhkhkkhhkkhhkhkhkkhkhkkhkhkhkhhkhkhkkhkhkkhkhkhkhkkhkhkkhhkkhkhkkhkkkkx
* Process fetch results if no error and no hole. *
kkhkkkkkkkhkkhkhkkkhhkhkkhhkkkhkkhkhkkhkhkhkhhkkhkhkkhkhkkhkhkhkkhkkhkhkkhkhkkhkkkkkkkx
IF SQLCODE >= 0
EXEC SQL GET DIAGNOSTICS
:HV-ROWCNT = ROW_COUNT
END-EXEC
PERFORM VARYING N FROM 1 BY 1 UNTIL N > HV-ROWCNT
IF INDA-WORKDEPT(N) NOT = -3
EVALUATE HVA-WORKDEPT (N)
WHEN ('D11")
PERFORM UPDATE-ROW
WHEN ('E11")
PERFORM DELETE-ROW
END-EVALUATE
END-IF
END-PERFORM
IF SQLCODE = 100
GO TO CLOSE-EMPSET
END-IF
ELSE
EXEC SQL GET DIAGNOSTICS
:HV-NUMCOND = NUMBER
END-EXEC
PERFORM VARYING N FROM 1 BY 1 UNTIL N > HV-NUMCOND
EXEC SQL GET DIAGNOSTICS CONDITION :N
:HV-SQLCODE = DB2_RETURNED_SQLCODE,
:HV-ROWNUM = DB2_ROW_NUMBER
END-EXEC
DISPLAY "SQLCODE = " HV-SQLCODE
DISPLAY "ROW NUMBER = " HV-ROWNUM
END-PERFORM
GO TO CLOSE-EMPSET
END-IF.

Figure 22. Performing positioned update and delete with a sensitive rowset cursor (Part 1 of
2)

124 Application Programming and SQL Guide

kkhkkkkhkkkhkkhkhkkhhkhkhhkkhhkkhhkhkhhkhkhhkkhkhkkhhkkhhkhkhkkhkhkkhhkkhhkkhkkkx
* Branch back to fetch and process *

* the next rowset. *
KA AR A A A A A A A A A A A AA ARk hhhhhkhhhhhhhhhdhdhkhkhdhdhdkdxsk

EE R

* Update row N in current rowset. *
khkkkkkkkhkkkhhkkhhkkhhkkhhkkhhhhhhhhkhhhkkhhhkkhhhkhhkhhhkkhhkkdhkdxxdxx
UPDATE-ROW.

EXEC SQL

UPDATE DSN8810.EMP
SET JOB = :NEW-JOB
FOR CURSOR EMPSET FOR ROW :N OF ROWSET
END-EXEC.
END-UPDATE-ROW.

KXKKKKRKKRKkKkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhrrrrrxixrixxxx

* Delete row N in current rowset. *
kkhkkkkhkkhkkhkkhhkkkhhkkhkhhkkhhkkhhkkhkkhkhhkkhkhkkhhkkhkhkhkhkkhkhkkhhkkhkkkkkkx
DELETE-ROW.

EXEC SQL

DELETE FROM DSN8810.EMP
FOR CURSOR EMPSET FOR ROW :N OF ROWSET
END-EXEC.
END-DELETE-ROW.

kkhkkkkhkkhkkhkkhkhkkhhkhkhhkkhhkkhhkhkhkhkhkhhkkhhkkhhkkhkhkhkhkkhkhkkhhkkhhkkkkkx
* Close the cursor. *
kkhkkkkhkkhkkhkkhkhkkhhkhkhhkkhhkkhhkkhhkhkhhkkhhkkhhkkhhkhkhkkhkhkkhhkkhkkkkkkx
CLOSE-EMPSET.
EXEC SQL
CLOSE EMPSET
END-EXEC.

Figure 22. Performing positioned update and delete with a sensitive rowset cursor (Part 2 of

2)

Chapter 7. Using a cursor to retrieve a set of rows

125

126 Application Programming and SQL Guide

Chapter 8. Generating declarations for your tables using
DCLGEN

DCLGEN, the declarations generator supplied with DB2, produces a DECLARE
statement you can use in a C, COBOL, or PL/I program, so that you do not need
to code the statement yourself. For detailed syntax of DCLGEN, see Part 3 of
ICommand Reference]

DCLGEN generates a table declaration and puts it into a member of a partitioned
data set that you can include in your program. When you use DCLGEN to
generate a table’s declaration, DB2 gets the relevant information from the DB2
catalog, which contains information about the table’s definition and the definition
of each column within the table. DCLGEN uses this information to produce a
complete SQL DECLARE statement for the table or view and a corresponding
PL/1, C structure declaration, or COBOL record description. You can use DCLGEN
for table declarations only if the table you are declaring already exists.

You must use DCLGEN before you precompile your program. Supply the table or
view name to DCLGEN before you precompile your program. To use the
declarations generated by DCLGEN in your program, use the SQL INCLUDE
statement. For more information about the INCLUDE statement, see Chapter 5 of
IDB2 SOL Referencel

DB2 must be active before you can use DCLGEN. You can start DCLGEN in
several different ways:

* From ISPF through DB2I. Select the DCLGEN option on the DB2I Primary
Option Menu panel.

* Directly from TSO. To do this, sign on to TSO, issue the TSO command DSN,
and then issue the subcommand DCLGEN.

e From a CLIST, running in TSO foreground or background, that issues DSN and
then DCLGEN.

* With JCL. Supply the required information, using JCL, and run DCLGEN in
batch.

If you want to start DCLGEN in the foreground, and your table names include
DBCS characters, you must provide and display double-byte characters. If you
do not have a terminal that displays DBCS characters, you can enter DBCS
characters using the hex mode of ISPF edit.

This chapter includes the following sections:

* [“Invoking DCLGEN through DB2I” on page 128

* |“Including the data declarations in your program” on page 128|

+ ["DCLGEN support of C, COBOL, and PL/I languages” on page 129|

* |“Example: Adding a table declaration and host-variable structure to a library’|

on page 130|

© Copyright IBM Corp. 1983, 2006 127

Invoking DCLGEN through DB2I

The easiest way to start DCLGEN is through DB2I. shows the DCLGEN
panel you reach by selecting the DCLGEN option on the DB2I Primary Option
Menu panel. For more instructions on using DB2I, see [“Using ISPF and DB2)
IInteractive” on page 502.|

4 N\
DSNEDPO1 DCLGEN SSID: DSN
===>
Enter table name for which declarations are required:
1 SOURCE TABLE NAME ===> (Unqualified table name)
2 TABLE OWNER ===> (Optional)
3 AT LOCATION ===> (Optional)
Enter destination data set: (Can be sequential or partitioned)
4 DATA SET NAME ... ===>
5 DATA SET PASSWORD ===> (If password protected)
Enter options as desired:
6 ACTIONo.o... ===> (ADD new or REPLACE old declaration)
7 COLUMN LABEL ===> (Enter YES for column label)
8 STRUCTURE NAME .. ===> (Optional)
9 FIELD NAME PREFIX ===> (Optional)
10 DELIMIT DBCS ===> (Enter YES to delimit DBCS identifiers)
11 COLUMN SUFFIX ... ===> (Enter YES to append column name)
12 INDICATOR VARS .. ===> (Enter YES for indicator variables)
\\PRESS: ENTER to process END to exit HELP for more information)

Figure 23. DCLGEN panel

The DB2I help system contains detailed descriptions of the fields of the DCLGEN
panel. For more information about the DB2I help system, see [“DB2I help” on pagel
i

DCLGEN generates a table or column name in the DECLARE statement as a
non-delimited identifier unless at least one of the following conditions is true:
* The name contains special characters and is not a DBCS string.

e The name is a DBCS string, and you have requested delimited DBCS names.

If you are using an SQL reserved word as an identifier, you must edit the
DCLGEN output in order to add the appropriate SQL delimiters.

DCLGEN produces output that is intended to meet the needs of most users, but
occasionally, you will need to edit the DCLGEN output to work in your specific
case. For example, DCLGEN is unable to determine whether a column that is
defined as NOT NULL also contains the DEFAULT clause, so you must edit the
DCLGEN output to add the DEFAULT clause to the appropriate column
definitions.

Including the data declarations in your program

Use the following SQL INCLUDE statement to place the generated table
declaration and COBOL record description in your source program:

EXEC SQL
INCLUDE member-name
END-EXEC.

For example, to include a description for the table DSN8810.EMP, code:

128 Application Programming and SQL Guide

EXEC SQL
INCLUDE DECEMP
END-EXEC.

In this example, DECEMP is a name of a member of a partitioned data set that
contains the table declaration and a corresponding COBOL record description of
the table DSN8810.EMP. (A COBOL record description is a two-level host structure
that corresponds to the columns of a table’s row. For information on host
structures, see |Chapter 9, “Embedding SQL statements in host languages,” on page|
To get a current description of the table, use DCLGEN to generate the table’s
declaration and store it as member DECEMP in a library (usually a partitioned
data set) just before you precompile the program.

DCLGEN support of C, COBOL, and PL/l languages

DCLGEN derives variable names from the source in the database. lists the
type declarations that DCLGEN produces for C, COBOL, and PL/I based on the
corresponding SQL data types that are contained in the source tables. In
var represents variable names that DCLGEN provides.

Table 10. Declarations generated by DCLGEN

SQL data type’ C COBOL PL/T
SMALLINT short int PIC S9(4) USAGE COMP BIN FIXED(15)
INTEGER long int PIC S9(9) USAGE COMP BIN FIXED(31)
DECIMAL(p,s) or decimal(p,s)? PIC S9(p-s)V9(s) USAGE COMP-3 DEC FIXED(p,s)
NUMERIC(p,s)

If p>15, the PL/I
compiler must
support this precision,
or a warning is
generated.

REAL or FLOAT(n) 1 <=n <= float USAGE COMP-1 BIN FLOAT(n)
21
DOUBLE PRECISION, double USAGE COMP-2 BIN FLOAT(n)
DOUBLE, or FLOAT(n)
CHAR(1) char PIC X(1) CHAR(1)
CHAR(n) char var [n+1] PIC X(n) CHAR(n)
VARCHAR(n) struct 10 var. CHAR(n) VAR
{short int var_len; 49 var_LEN PIC 9(4)
char var_data[n]; USAGE COMP.
} var; 49 var _TEXT PIC X(n).
CLOB(n)® SQL TYPE IS USAGE SQL TYPE IS CLOB-LOCATOR SQL TYPE IS
CLOB_LOCATOR CLOB_LOCATOR
GRAPHIC(1) sqldbchar PIC G(1) GRAPHIC(1)
GRAPHIC(n) n > 1 sqldbchar var[n+1]; PIC G(n) USAGE GRAPHIC(n)
DISPLAY-1.%
or
PIC N(n).*

Chapter 8. Generating declarations for your tables using DCLGEN 129

Table 10. Declarations generated by DCLGEN (continued)

SQL data type" C COBOL PL/1
VARGRAPHIC(n) struct VARGRAPH 10 var. GRAPHIC(n) VAR
{short len; 49 var_LEN PIC 9(4)
sqldbchar data[n]; USAGE COMP.

} var; 49 var TEXT PIC G(n)
USAGE DISPLAY-1.%
or
10 var.
49 var LEN PIC 9(4)
USAGE COMP.
49 var TEXT PIC N(n).*
DBCLOB(n)5 SQL TYPE IS USAGE SQL TYPE IS SQL TYPE IS
DBCLOB_LOCATOR DBCLOB-LOCATOR DBCLOB_LOCATOR
BLOB(n)5 SQL TYPE IS USAGE SQL TYPE IS BLOB-LOCATOR SQL TYPE IS
BLOB_LOCATOR BLOB_LOCATOR
DATE char var[11]° PIC X(10)° CHAR(10)®
TIME char var[9]°¢ PIC X(8)° CHAR(8)®
TIMESTAMP char var[27] PIC X(26) CHAR(26)
ROWID SQL TYPE IS ROWID USAGE SQL TYPE IS ROWID SQL TYPE IS ROWID
Notes:

1. For a distinct type, DCLGEN generates the host language equivalent of the source data type.

2. If your C compiler does not support the decimal data type, edit your DCLGEN output, and replace the decimal
data declarations with declarations of type double.

3. For a BLOB, CLOB, or DBCLOB data type, DCLGEN generates a LOB locator.

4. DCLGEN chooses the format based on the character you specify as the DBCS symbol on the COBOL Defaults
panel.

5. This declaration is used unless a date installation exit routine exists for formatting dates, in which case the length
is that specified for the LOCAL DATE LENGTH installation option.

6. This declaration is used unless a time installation exit routine exists for formatting times, in which case the length
is that specified for the LOCAL TIME LENGTH installation option.

For more details about the DCLGEN subcommand, see Part 3 of [DB2 Command

Example: Adding a table declaration and host-variable structure to a
library
This example adds an SQL table declaration and a corresponding host-variable
structure to a library. This example is based on the following scenario:
* The library name is prefix TEMP.COBOL.
* The member is a new member named VPHONE.
 The table is a local table named DSN8810.VPHONE.

¢ The host-variable structure is for COBOL.
¢ The structure receives the default name DCLVPHONE.

Information that you must enter is in bold-faced type.

Step 1. Specify COBOL as the host language
Select option D on the ISPF/PDF menu to display the DB2I Defaults panel.

130 Application Programming and SQL Guide

Specify COBOL as the application language, as shown in and press
Enter.

4 N

DSNEOPO1 DB2I DEFAULTS

COMMAND ===>_

Change defaults as desired:

1 DB2 NAMEcoevnnn. ===> DSN (Subsystem identifier)

2 DB2 CONNECTION RETRIES ===> 0 (How many retries for DB2 connection)

3 APPLICATION LANGUAGE ===> COBOL (ASM, C, CPP, IBMCOB, FORTRAN, PLI)

4 LINES/PAGE OF LISTING ===> 80 (A number from 5 to 999)

5 MESSAGE LEVEL ===> [(Information, Warning, Error, Severe)

6 SQL STRING DELIMITER ===> DEFAULT (DEFAULT, ' or ")

7 DECIMAL POINT ===> (. or,)

8 STOP IF RETURN CODE >= ===> 8 (Lowest terminating return code)

9 NUMBER OF ROWS ===> 20 (For ISPF Tables)

10 CHANGE HELP BOOK NAMES?===> NO (YES to change HELP data set names)

11 DB2I JOB STATEMENT: (Optional if your site has a SUBMIT exit)
===> //USRTOO1A JOB (ACCOUNT),'NAME'
===> /[
===> [/«
===> /[

PRESS: ENTER to process END to cancel HELP for more information)

Figure 24. DB2I defaults panel—changing the application language

The COBOL Defaults panel is then displayed, as shown in Fill in the
COBOL Defaults panel as necessary. Press Enter to save the new defaults, if any,
and return to the DB2I Primary Option menu.

DSNEOPO2 COBOL DEFAULTS
COMMAND ===>_

Change defaults as desired:

1 COBOL STRING DELIMITER
2 DBCS SYMBOL FOR DCLGEN

> (DEFAULT, ' or ")
> (G/N - Character in PIC clause)

Figure 25. The COBOL defaults panel. Shown only if the field APPLICATION LANGUAGE on
the DB2| Defaults panel is IBMCOB.

Step 2. Create the table declaration and host structure

Select the DCLGEN option on the DB2I Primary Option menu, and press Enter to
display the DCLGEN panel.

Fill in the fields as shown in|Figure 26 on page 132 and then press Enter.

Chapter 8. Generating declarations for your tables using DCLGEN 131

s
DSNEDPO1
===>
Enter table name for which

1 SOURCE TABLE NAME ===>
2 TABLE OWNER >
3 AT LOCATION

..... ===>
Enter destination data set:
4 DATA SET NAME ... ===>
5 DATA SET PASSWORD ===>

Enter options as desired:

DCLGEN SSID: DSN
declarations are required:
DSN8810.VPHONE

(Location of table, optional)

(Can be sequential or partitioned)

TEMP (VPHONEC)
(If password protected)

6 ACTION ===> ADD (ADD new or REPLACE old declaration)
7 COLUMN LABEL ===> NO (Enter YES for column label)
8 STRUCTURE NAME .. ===> (Optional)
9 FIELD NAME PREFIX ===> (Optional)
10 DELIMIT DBCS ===> YES (Enter YES to delimit DBCS identifiers)
11 COLUMN SUFFIX ... ===> NO (Enter YES to append column name)
12 INDICATOR VARS .. ===> NO (Enter YES for indicator variables)
END to exit HELP for more information

\\PRESS: ENTER to process

Figure 26. DCLGEN panel—selecting source table and destination data set

If the operation succeeds, a message is displayed at the top of your screen, as
shown in

DSNE9O5I EXECUTION COMPLETE, MEMBER VPHONEC ADDED

*k%k

Figure 27. Successful completion message

DB2 again displays the DCLGEN screen, as shown in Press Enter to
return to the DB2I Primary Option menu.

Vs
DSNEDPO1
===>
DSNE2941 SYSTEM RETCODE=000 USER OR DSN RETCODE=0
Enter table name for which declarations are required:

1 SOURCE TABLE NAME > DSN8810.VPHONE
2 TABLE OWNER
3 AT LOCATION

DCLGEN SSID: DSN

..... (Location of table, optional)
Enter destination data set: (Can be sequential or partitioned)
4 DATA SET NAME ... > TEMP (VPHONEC)

5 DATA SET PASSWORD ===> (If password protected)

Enter options as desired:

6 ACTION ===> ADD (ADD new or REPLACE old declaration)

7 COLUMN LABEL ===> NO (Enter YES for column Tabel)

8 STRUCTURE NAME .. ===> (Optional)

9 FIELD NAME PREFIX ===> (Optional)

10 DELIMIT DBCS ===> (Enter YES to delimit DBCS identifiers)
11 COLUMN SUFFIX ... ===> (Enter YES to append column name)

12 INDICATOR VARS .. ===> (Enter YES for indicator variables)

PRESS: ENTER to process END to exit HELP for more information

Figure 28. DCLGEN panel—displaying system and user return codes

Step 3. Examine the results

To browse or edit the results, exit from DB2I, and select either the browse or the
edit option from the ISPF/PDF menu to view the results.

132 Application Programming and SQL Guide

For this example, the data set to edit is prefix. TEMP.COBOL(VPHONEC), which is
shown in

%% DCLGEN TABLE(DSN8810.VPHONE) *HK
*XKEK LIBRARY (SYSADM.TEMP.COBOL (VPHONEC)) *kk
*kkkk QUOTE *k Kk

*x%%%% .., IS THE DCLGEN COMMAND THAT MADE THE FOLLOWING STATEMENTS #x=
EXEC SQL DECLARE DSN8810.VPHONE TABLE

(LASTNAME VARCHAR(15) NOT NULL,
FIRSTNAME VARCHAR(12) NOT NULL,
MIDDLEINITIAL CHAR(1) NOT NULL,
PHONENUMBER VARCHAR(4) NOT NULL,
EMPLOYEENUMBER CHAR(6) NOT NULL,

DEPTNUMBER CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL

) END-EXEC.

%%+ COBOL DECLARATION FOR TABLE DSN8810.VPHONE B

01 DCLVPHONE.

10 LASTNAME.
49 LASTNAME-LEN PIC S9(4) USAGE COMP.
49 LASTNAME-TEXT PIC X(15).

10 FIRSTNAME.
49 FIRSTNAME-LEN PIC S9(4) USAGE COMP.
49 FIRSTNAME-TEXT PIC X(12).

10 MIDDLEINITIAL PIC X(1).

10 PHONENUMBER.
49 PHONENUMBER-LEN PIC S9(4) USAGE COMP.
49 PHONENUMBER-TEXT PIC X(4).

10 EMPLOYEENUMBER PIC X(6).
10 DEPTNUMBER PIC X(3).
10 DEPTNAME.
49 DEPTNAME-LEN PIC S9(4) USAGE COMP.

49 DEPTNAME-TEXT PIC X(36).
x%%% THE NUMBER OF COLUMNS DESCRIBED BY THIS DECLARATION IS 7 ##k*x%

Figure 29. DCLGEN results displayed in edit mode

Chapter 8. Generating declarations for your tables using DCLGEN 133

134 Application Programming and SQL Guide

Chapter 9. Embedding SQL statements in host languages

This chapter provides detailed information about using each of the following
languages to write embedded SQL application programs:

« [“Coding SQL statements in an assembler application”|

e |“Coding SQL statements in a C or C++ application” on page 14

e |“Coding SQL statements in a COBOL application” on page 177

e |“Coding SQL statements in a Fortran a
¢ “Coding SQL statements in a PL/I a
* |”Coding SQL statements in a REXX application” on page 240.

For each language, this chapter provides unique instructions or details about:
* Defining the SQL communications area

* Defining SQL descriptor areas

* Embedding SQL statements

* Using host variables

* Declaring host variables

* Declaring host variable arrays for C or C++, COBOL, and PL/I

¢ Determining equivalent SQL data types

¢ Determining if SQL and host language data types are compatible
 Using indicator variables or host structures, depending on the language
* Handling SQL error return codes

For information about reading the syntax diagrams in this chapter, see
fread the syntax diagrams” on page xx.|

For information about writing embedded SQL application programs in Java, see
[DB2 Application Programming Guide and Reference for Java

Coding SQL statements in an assembler application

This section helps you with the programming techniques that are unique to coding
SQL statements within an assembler program.

Defining the SQL communications area

An assembler program that contains SQL statements must include one or both of
the following host variables:

* An SQLCODE variable, declared as a fullword integer

e An SQLSTATE variable, declared as a character string of length 5 (CL5)

Alternatively, you can include an SQLCA, which contains the SQLCODE and
SQLSTATE variables.

DB2 sets the SQLCODE and SQLSTATE values after each SQL statement executes.
An application can check these values to determine whether the last SQL statement
was successful. All SQL statements in the program must be within the scope of the
declaration of the SQLCODE and SQLSTATE variables.

Whether you define the SQLCODE or SQLSTATE variable or an SQLCA in your

program depends on whether you specify the precompiler option STDSQL(YES) to
conform to the SQL standard, or STDSQL(NO) to conform to DB2 rules.

© Copyright IBM Corp. 1983, 2006 135

Assembler

If you specify STDSQL(YES)

When you use the precompiler option STDSQL(YES), do not define an SQLCA. If
you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors.

If you declare an SQLSTATE variable, it must not be an element of a structure. You
must declare the host variables SQLCODE and SQLSTATE within a BEGIN
DECLARE SECTION and END DECLARE SECTION statement in your program
declarations.

If you specify STDSQL(NO)

When you use the precompiler option STDSQL(NO), include an SQLCA explicitly.
You can code the SQLCA in an assembler program, either directly or by using the
SQL INCLUDE statement. The SQL INCLUDE statement requests a standard
SQLCA declaration:

EXEC SQL INCLUDE SQLCA

If your program is reentrant, you must include the SQLCA within a unique data
area that is acquired for your task (a DSECT). For example, at the beginning of
your program, specify:
PROGAREA DSECT

EXEC SQL INCLUDE SQLCA

As an alternative, you can create a separate storage area for the SQLCA and
provide addressability to that area.

See Chapter 5 of [DB2 SQL Reference| for more information about the INCLUDE
statement and Appendix D of [DB2 SQL Referencd for a complete description of
SQLCA fields.

Defining SQL descriptor areas

The following statements require an SQLDA:

e CALL ... USING DESCRIPTOR descriptor-name

* DESCRIBE statement-name INTO descriptor-name

* DESCRIBE CURSOR host-variable INTO descriptor-name
* DESCRIBE INPUT statement-name INTO descriptor-name
* DESCRIBE PROCEDURE host-variable INTO descriptor-name
* DESCRIBE TABLE host-variable INTO descriptor-name

¢ EXECUTE ... USING DESCRIPTOR descriptor-name

* FETCH ... USING DESCRIPTOR descriptor-name

e OPEN ... USING DESCRIPTOR descriptor-name

e PREPARE ... INTO descriptor-name

Unlike the SQLCA, a program can have more than one SQLDA in a program, and
an SQLDA can have any valid name. You can code an SQLDA in an assembler
program, either directly or by using the SQL INCLUDE statement. The SQL
INCLUDE statement requests a standard SQLDA declaration:

EXEC SQL INCLUDE SQLDA

You must place SQLDA declarations before the first SQL statement that references
the data descriptor, unless you use the precompiler option TWOPASS. See Chapter
5 of |DB2 SQL Referencd for more information about the INCLUDE statement and
Appendix E of [DB2 SQL Referencd for a complete description of SQLDA fields.

136 Application Programming and SQL Guide

Assembler

Embedding SQL statements

You can code SQL statements in an assembler program wherever you can use
executable statements.

Each SQL statement in an assembler program must begin with EXEC SQL. The
EXEC and SQL keywords must appear on one line, but the remainder of the
statement can appear on subsequent lines.

You might code an UPDATE statement in an assembler program as follows:

EXEC SQL UPDATE DSN8810.DEPT X
SET MGRNO = :MGRNUM X
WHERE DEPTNO = :INTDEPT

Multiple-row FETCH statements: You can use only the FETCH ... USING
DESCRIPTOR form of the multiple-row FETCH statement in an assembler
program. The DB2 precompiler does not recognize declarations of host variable
arrays for an assembler program.

Comments: You cannot include assembler comments in SQL statements. However,
you can include SQL comments in any embedded SQL statement.

Continuation for SQL statements: The line continuation rules for SQL statements
are the same as those for assembler statements, except that you must specify EXEC
SQL within one line. Any part of the statement that does not fit on one line can
appear on subsequent lines, beginning at the continuation margin (column 16, the
default). Every line of the statement, except the last, must have a continuation
character (a non-blank character) immediately after the right margin in column 72.

Declaring tables and views: Your assembler program should include a DECLARE
statement to describe each table and view the program accesses.

Including code: To include SQL statements or assembler host variable declaration
statements from a member of a partitioned data set, place the following SQL
statement in the source code where you want to include the statements:

EXEC SQL INCLUDE member-name
You cannot nest SQL INCLUDE statements.

Margins: The precompiler option MARGINS allows you to set a left margin, a right
margin, and a continuation margin. The default values for these margins are
columns 1, 71, and 16, respectively. If EXEC SQL starts before the specified left
margin, the DB2 precompiler does not recognize the SQL statement. If you use the
default margins, you can place an SQL statement anywhere between columns 2
and 71.

Names: You can use any valid assembler name for a host variable. However, do
not use external entry names or access plan names that begin with 'DSN” or host
variable names that begin with ‘SQL’. These names are reserved for DB2.

The first character of a host variable that is used in embedded SQL cannot be an

underscore. However, you can use an underscore as the first character in a symbol
that is not used in embedded SQL.

Chapter 9. Embedding SQL statements in host languages 137

Assembler

Statement labels: You can prefix an SQL statement with a label. The first line of an
SQL statement can use a label beginning in the left margin (column 1). If you do
not use a label, leave column 1 blank.

WHENEVER statement: The target for the GOTO clause in an SQL WHENEVER
statement must be a label in the assembler source code and must be within the
scope of the SQL statements that WHENEVER affects.

Special assembler considerations: The following considerations apply to programs
written in assembler:

* To allow for reentrant programs, the precompiler puts all the variables and
structures it generates within a DSECT called SQLDSECT, and it generates an
assembler symbol called SQLDLEN. SQLDLEN contains the length of the
DSECT. Your program must allocate an area of the size indicated by SQLDLEN,
initialize it, and provide addressability to it as the DSECT SQLDSECT.

— CICS
An example of code to support reentrant programs, running under CICS,
follows:

DFHEISTG DSECT
DFHEISTG
EXEC SQL INCLUDE SQLCA
*
DS OF
SQDWSREG EQU R7
SQDWSTOR DS (SQLDLEN)C RESERVE STORAGE TO BE USED FOR SQLDSECT

XXPROGRM DFHEIENT CODEREG=R12,EIBREG=R11,DATAREG=R13

*

*

* SQL WORKING STORAGE
LA SQDWSREG, SQDWSTOR GET ADDRESS OF SQLDSECT
USING SQLDSECT,SQDWSREG AND TELL ASSEMBLER ABOUT IT

— TSO
The sample program in prefix. SDSNSAMP(DSNTIAD) contains an example
of how to acquire storage for the SQLDSECT in a program that runs in a
TSO environment.

* DB2 does not process set symbols in SQL statements.
* Generated code can include more than two continuations per comment.

* Generated code uses literal constants (for example, =F’-84"), so an LTORG
statement might be necessary.

* Generated code uses registers 0, 1, 14, and 15. Register 13 points to a save area
that the called program uses. Register 15 does not contain a return code after a
call that is generated by an SQL statement.

138 Application Programming and SQL Guide

Assembler

— CICS
A CICS application program uses the DFHEIENT macro to generate the
entry point code. When using this macro, consider the following:

— If you use the default DATAREG in the DFHEIENT macro, register 13
points to the save area.

— If you use any other DATAREG in the DFHEIENT macro, you must
provide addressability to a save area.

For example, to use SAVED, you can code instructions to save, load, and
restore register 13 around each SQL statement as in the following

example.

ST 13,SAVER13 SAVE REGISTER 13
LA 13,SAVED POINT TO SAVE AREA
EXEC SQL . . .

L 13,SAVER13 RESTORE REGISTER 13

 If you have an addressability error in precompiler-generated code because of
input or output host variables in an SQL statement, check to make sure that you
have enough base registers.

* Do not put CICS translator options in the assembly source code. Instead, pass
the options to the translator by using the PARM field.

Using host variables

You must explicitly declare each host variable before its first use in an SQL
statement if you specify the precompiler option ONEPASS. If you specify the
precompiler option TWOPASS, you must declare the host variable before its use in
the statement DECLARE CURSOR.

You can precede the assembler statements that define host variables with the
statement BEGIN DECLARE SECTION, and follow the assembler statements with
the statement END DECLARE SECTION. You must use the statements BEGIN
DECLARE SECTION and END DECLARE SECTION when you use the
precompiler option STDSQL(YES).

You can declare host variables in normal assembler style (DC or DS), depending on
the data type and the limitations on that data type. You can specify a value on DC
or DS declarations (for example, DC H’5"). The DB2 precompiler examines only
packed decimal declarations.

A colon (:) must precede all host variables in an SQL statement.

An SQL statement that uses a host variable must be within the scope of the
statement that declares the variable.

Declaring host variables

Only some of the valid assembler declarations are valid host variable declarations.
If the declaration for a host variable is not valid, any SQL statement that references
the variable might result in the message UNDECLARED HOST VARIABLE.

Numeric host variables: [Figure 30 on page 140 shows the syntax for declarations of
numeric host variables. The numeric value specifies the scale of the packed decimal
variable. If value does not include a decimal point, the scale is 0.

Chapter 9. Embedding SQL statements in host languages 139

Assembler

A\
A

»—variable-name—Egg_l |_1_| H |_|_2_|
T
—P—LL—n_I—’vaZue’ —
R
]
[
()
()
()

—EH

—EB

Figure 30. Numeric host variables

For floating-point data types (E, EH, EB, D, DH, and DB), DB2 uses the FLOAT
precompiler option to determine whether the host variable is in IEEE binary
floating-point or System/390® hexadecimal floating-point format. If the
precompiler option is FLOAT(S390), you need to define your floating-point host
variables as E, EH, D, or DH. If the precompiler option is FLOAT(IEEE), you need
to define your floating-point host variables as EB or DB. DB2 converts all
floating-point input data to System/390 hexadecimal floating-point before storing
it.

Character host variables: The three valid forms for character host variables are:
* Fixed-length strings

* Varying-length strings

e CLOBs

The following figures show the syntax for forms other than CLOBs. See
for the syntax of CLOBs.

shows the syntax for declarations of fixed-length character strings.

»»>—variable-name DC C <
pod L L,

Figure 31. Fixed-length character strings

[Figure 32 on page 141| shows the syntax for declarations of varying-length
character strings.

140 Application Programming and SQL Guide

Assembler

A\
A

»>—variable-name DC H , CLn
L] L T LT L

Figure 32. Varying-length character strings

Graphic host variables: The three valid forms for graphic host variables are:
* Fixed-length strings

* Varying-length strings

* DBCLOBs

The following figures show the syntax for forms other than DBCLOBs. See

[Figure 37 on page 142| for the syntax of DBCLOBs. In the syntax diagrams, value
denotes one or more DBCS characters, and the symbols < and > represent shift-out
and shift-in characters.

shows the syntax for declarations of fixed-length graphic strings.

<value> —

»»—variable-name DC_| G <
DS FLn—
Ln’<value> —

Figure 33. Fixed-length graphic strings

shows the syntax for declarations of varying-length graphic strings.

A\
A

»»>—variable-name DS H ,—GLn
_[DC—l I—L2—| l—’m’ —| |—’<value>’ —|

Figure 34. Varying-length graphic strings

Result set locators:[Figure 35 shows the syntax for declarations of result set
locators. See [Chapter 25, “Using stored procedures for client/server processing,” on|
lpage 573 for a discussion of how to use these host variables.

»»—variable-name DC F <
pod LiJ L,

Figure 35. Result set locators

Table Locators: [Figure 36| shows the syntax for declarations of table locators. See
“ Accessing transition tables in a user-defined function or stored procedure” onl|
page 335 for a discussion of how to use these host variables.

»»>—variable-name—SQL TYPE IS—TABLE LIKE—table-name—AS LOCATOR >

Figure 36. Table locators

Chapter 9. Embedding SQL statements in host languages 141

Assembler

LOB variables and locators: shows the syntax for declarations of BLOB,
CLOB, and DBCLOB host variables and locators. See [Chapter 14, “Programming|
ffor large objects,” on page 289| for a discussion of how to use these host variables.

»»—variable-name—SQL TYPE IS |_BINARY LARGE OBJECT | length ><
BLOB -
—ECHARACTER LARGE OBJECT——

=~
|

<

CHAR LARGE OBJECT
CLOB
L DBCLOB
BLOB_LOCATOR
- CLOB_LOCATOR
L_DBCLOB_LOCATOR—

[p]

Figure 37. LOB variables and locators

If you specify the length of the LOB in terms of KB, MB, or GB, you must leave no
spaces between the length and K, M, or G.

ROWIDs: |Figure 38| shows the syntax for declarations of ROWID host variables.
See [Chapter 14, “Programming for large objects,” on page 289 for a discussion of
how to use these host variables.

»»>—variable-name—SQL TYPE IS—ROWID ><

Figure 38. ROWID variables

Determining equivalent SQL and assembler data types

able 11f describes the SQL data type, and base SQLTYPE and SQLLEN values, that
the precompiler uses for the host variables it finds in SQL statements. If a host
variable appears with an indicator variable, the SQLTYPE is the base SQLTYPE
plus 1.

Table 11. SQL data types the precompiler uses for assembler declarations

SQLTYPE of SQLLEN of
Assembler data type host variable host variable SQL data type

DS HL2 500 2 SMALLINT

DS FL4 496 4 INTEGER

DS P'value'’ 484 pinbyte 1, sin DECIMAL(p,s)

DS PLn'value' or byte 2

DS PLn See the description for

1<=n<=16 DECIMAL(p,s) in [Table 12 o
page 144

DS EL4 480 4 REAL or FLOAT (n)

DS EHL4 1<=n<=21

DS EBL4

DS DL8 480 8 DOUBLE PRECISION,

DS DHL8 or FLOAT (n)

DS DBLS8 22<=n<=53

DS CLn 452 n CHAR(n)

1<=n<=255

142 Application Programming and SQL Guide

Assembler

Table 11. SQL data types the precompiler uses for assembler declarations (continued)

SOLTYPE of SQLLEN of
Assembler data type host variable host variable SQL data type

DS HL2,CLn 448 n VARCHAR (n)
1<=n<=255

DS HLZ,CLn 456 n VARCHAR (n)
n>255

DS GLm 468 n GRAPHIC(n)?
2<=m<=254"

DS HL2,GLm 464 n VARGRAPHIC (n)?
2<=m<=2541

DS HL2,GLm 472 n VARGRAPHIC (n)2
m>2541

DS FL4 972 4 Result set locator?

SQL TYPE IS 976 4 Table Tocator?
TABLE LIKE
table-name
AS LOCATOR

SQL TYPE IS 960 4 BLOB Tocator?
BLOB_LOCATOR

SQL TYPE IS 964 4 CLOB Tocator?
CLOB_LOCATOR

SQL TYPE IS 968 4 DBCLOB locator®
DBCLOB_LOCATOR

SQL TYPE IS 404 n BLOB(n)
BLOB(n)
1=n=2147483647

SQL TYPE IS 408 n CLOB(n)
CLOB(n)
1=n=2147483647

SQL TYPE IS 412 n DBCLOB(n)?
DBCLOB(n)
1=n=<10737418232

SQL TYPE IS ROWID 904 40 ROWID

Notes:
1. m is the number of bytes.
2. n is the number of double-byte characters.

3. This data type cannot be used as a column type.

[Table 12 on page 144] helps you define host variables that receive output from the
database. You can use [Table 12 on page 144|to determine the assembler data type
that is equivalent to a given SQL data type. For example, if you retrieve
TIMESTAMP data, you can use the table to define a suitable host variable in the
program that receives the data value.

[Table 12 on page 144]shows direct conversions between DB2 data types and host
data types. However, a number of DB2 data types are compatible. When you do
assignments or comparisons of data that have compatible data types, DB2 does
conversions between those compatible data types. See [Table 1 on page 5| for
information about compatible data types.

Chapter 9. Embedding SQL statements in host languages 143

Assembler

144 Application Programming and SQL Guide

Table 12. SQL data types mapped to typical assembler declarations

SQL data type

Assembler equivalent

Notes

SMALLINT DS HL2

INTEGER DS F

DECIMAL(p,s) or DS Pvalue’ p is precision; s is scale. 1<=p<=31 and

NUMERIC(p,s) DS PLn’value’ O<=s<=p. 1<=n<=16. value is a literal value

DS PLn that includes a decimal point. You must
use Ln, value, or both. Using only value is
recommended.

Precision: If you use Lu, it is 2n-1;
otherwise, it is the number of digits in
value. Scale: If you use value, it is the
number of digits to the right of the
decimal point; otherwise, it is 0.

For efficient use of indexes: Use value. If
p is even, do not use Ln and be sure the
precision of value is p and the scale of
value is s. If p is odd, you can use Ln
(although it is not advised), but you must
choose 1 so that 2n-1=p, and value so that
the scale is s. Include a decimal point in
value, even when the scale of value is 0.

REAL or FLOAT(n) DS EL4 1<=n<=21

DS EHL4

DS EBL4!

DOUBLE DS DL8 22<=n<=53

PRECISION, DS DHLS8

DOUBLE, or DS DBLS8!

FLOAT(n)

CHAR(n) DS CLn 1<=n<=255

VARCHAR(n) DS HL2,CLn

GRAPHIC(n) DS GLm m is expressed in bytes. 1 is the number
of double-byte characters. 1<=n<=127

VARGRAPHIC(n) DS HL2,GLx x and m are expressed in bytes. n is the

DS HL2'm’,GLx'<value>" number of double-byte characters. < and
> represent shift-out and shift-in
characters.

DATE DS CLn If you are using a date exit routine, 7 is
determined by that routine; otherwise, n
must be at least 10.

TIME DS CLn If you are using a time exit routine, # is
determined by that routine. Otherwise, n
must be at least 6; to include seconds, n
must be at least 8.

TIMESTAMP DS CLn n must be at least 19. To include
microseconds, n must be 26; if 1 is less
than 26, truncation occurs on the
microseconds part.

Result set locator DS F Use this data type only to receive result

sets. Do not use this data type as a
column type.

Assembler

Table 12. SQL data types mapped to typical assembler declarations (continued)

SQL data type

Assembler equivalent

Notes

Table locator SQL TYPE IS Use this data type only in a user-defined
TABLE LIKE function or stored procedure to receive
table-name rows of a transition table. Do not use this
AS LOCATOR data type as a column type.

BLOB locator SQL TYPE IS Use this data type only to manipulate

BLOB_LOCATOR

data in BLOB columns. Do not use this
data type as a column type.

CLOB locator

SQL TYPE IS
CLOB_LOCATOR

Use this data type only to manipulate
data in CLOB columns. Do not use this
data type as a column type.

DBCLOB locator

SQL TYPE IS
DBCLOB_LOCATOR

Use this data type only to manipulate
data in DBCLOB columns. Do not use this
data type as a column type.

BLOB(n) SQL TYPE IS 1=n=2147483647
BLOB(n)

CLOB(n) SQL TYPE IS 1=n=2147483647
CLOB(n)

DBCLOB(n) SQL TYPE IS n is the number of double-byte characters.
DBCLOB(1) 1=n=1073741823

ROWID SQL TYPE IS ROWID

Notes:

1. IEEE floating-point host variables are not supported in user-defined functions and stored

procedures.

Notes on assembler variable declaration and usage
You should be aware of the following considerations when you declare assembler

variables.

Host graphic data type: You can use the assembler data type “host graphic” in
SQL statements when the precompiler option GRAPHIC is in effect. However, you
cannot use assembler DBCS literals in SQL statements, even when GRAPHIC is in

effect.

Character host variables: If you declare a host variable as a character string
without a length, for example DC C "ABCD’, DB2 interprets it as length 1. To get
the correct length, give a length attribute (for example, DC CL4’ABCD’).

Floating-point host variables: All floating-point data is stored in DB2 in

System /390 hexadecimal floating-point format. However, your host variable data
can be in System/390 hexadecimal floating-point format or IEEE binary
floating-point format. DB2 uses the FLOAT precompiler option to determine
whether your floating-point host variables are in IEEE binary floating-point format
or System/390 hexadecimal floating-point format. DB2 does no checking to
determine whether the host variable declarations or format of the host variable
contents match the precompiler option. Therefore, you need to ensure that your
floating-point host variable types and contents match the precompiler option.

Special purpose assembler data types: The locator data types are assembler
language data types and SQL data types. You cannot use locators as column types.
For information about how to use these data types, see the following sections:

Chapter 9. Embedding SQL statements in host languages 145

Assembler

Table locator |“Accessing transition tables in a user-defined function or stored|

procedure” on page 335

LOB locators [Chapter 14, “Programming for large objects,” on page 289

Overflow: Be careful of overflow. For example, suppose you retrieve an INTEGER
column value into a DS H host variable, and the column value is larger than 32767.
You get an overflow warning or an error, depending on whether you provided an
indicator variable.

Truncation: Be careful of truncation. For example, if you retrieve an 80-character
CHAR column value into a host variable declared as DS CL70, the rightmost ten
characters of the retrieved string are truncated. If you retrieve a floating-point or
decimal column value into a host variable declared as DS F, it removes any
fractional part of the value.

Determining compatibility of SQL and assembler data types

Assembler host variables used in SQL statements must be type compatible with the
columns with which you intend to use them.

* Numeric data types are compatible with each other: A SMALLINT, INTEGER,

DECIMAL, or FLOAT column is compatible with a numeric assembler host
variable.

Character data types are compatible with each other: A CHAR, VARCHAR, or
CLOB column is compatible with a fixed-length or varying-length assembler
character host variable.

Character data types are partially compatible with CLOB locators. You can
perform the following assignments:

— Assign a value in a CLOB locator to a CHAR or VARCHAR column

— Use a SELECT INTO statement to assign a CHAR or VARCHAR column to a
CLOB locator host variable.

— Assign a CHAR or VARCHAR output parameter from a user-defined function
or stored procedure to a CLOB locator host variable.

— Use a SET assignment statement to assign a CHAR or VARCHAR transition
variable to a CLOB locator host variable.

— Use a VALUES INTO statement to assign a CHAR or VARCHAR function
parameter to a CLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a CHAR or
VARCHAR column to a CLOB locator host variable.

Graphic data types are compatible with each other: A GRAPHIC,
VARGRAPHIC, or DBCLOB column is compatible with a fixed-length or
varying-length assembler graphic character host variable.

Graphic data types are partially compatible with DBCLOB locators. You can
perform the following assignments:

— Assign a value in a DBCLOB locator to a GRAPHIC or VARGRAPHIC
column

— Use a SELECT INTO statement to assign a GRAPHIC or VARGRAPHIC
column to a DBCLOB locator host variable.

— Assign a GRAPHIC or VARGRAPHIC output parameter from a user-defined
function or stored procedure to a DBCLOB locator host variable.

— Use a SET assignment statement to assign a GRAPHIC or VARGRAPHIC
transition variable to a DBCLOB locator host variable.

146 Application Programming and SQL Guide

Using

Assembler

— Use a VALUES INTO statement to assign a GRAPHIC or VARGRAPHIC
function parameter to a DBCLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a GRAPHIC
or VARGRAPHIC column to a DBCLOB locator host variable.

* Datetime data types are compatible with character host variables. A DATE,
TIME, or TIMESTAMP column is compatible with a fixed-length or
varying-length assembler character host variable.

¢ A BLOB column or a BLOB locator is compatible only with a BLOB host
variable.

* The ROWID column is compatible only with a ROWID host variable.

* A host variable is compatible with a distinct type if the host variable type is
compatible with the source type of the distinct type. For information about
assigning and comparing distinct types, see [Chapter 16, “Creating and using|
[distinct types,” on page 357|

When necessary, DB2 automatically converts a fixed-length string to a
varying-length string, or a varying-length string to a fixed-length string.

indicator variables

An indicator variable is a 2-byte integer (DS HL2). If you provide an indicator
variable for the variable X, when DB2 retrieves a null value for X, it puts a
negative value in the indicator variable and does not update X. Your program
should check the indicator variable before using X. If the indicator variable is
negative, you know that X is null and any value you find in X is irrelevant.

When your program uses X to assign a null value to a column, the program
should set the indicator variable to a negative number. DB2 then assigns a null
value to the column and ignores any value in X.

You declare indicator variables in the same way as host variables. You can mix the
declarations of the two types of variables in any way that seems appropriate. For
more information about indicator variables, see [“Using indicator variables with|
lhost variables” on page 79 or Chapter 2 of [DB2 SQL Referencel

Example: The following example shows a FETCH statement with the declarations
of the host variables that are needed for the FETCH statement:

EXEC SQL FETCH CLS_CURSOR INTO :CLSCD, X
:DAY :DAYIND, X
:BGN :BGNIND, X
:END :ENDIND

You can declare variables as follows:
CLSCD DS CL7

DAY DS HL2
BGN DS CL8
END DS CL8
DAYIND DS HL2 INDICATOR VARIABLE FOR DAY
BGNIND DS HL2 INDICATOR VARIABLE FOR BGN
ENDIND DS HL2 INDICATOR VARIABLE FOR END

[Figure 39 on page 14§ shows the syntax for declarations of indicator host variables.

Chapter 9. Embedding SQL statements in host languages 147

Assembler

A\
A

»»>—variable-name DC H
L] L T L]

Figure 39. Indicator variable

Handling SQL error return codes

You can use the subroutine DSNTIAR to convert an SQL return code into a text
message. DSNTIAR takes data from the SQLCA, formats it into a message, and
places the result in a message output area that you provide in your application
program. For concepts and more information about the behavior of DSNTIAR, see
[“Calling DSNTIAR to display SQLCA fields” on page 94.|

You can also use the MESSAGE_TEXT condition item field of the GET
DIAGNOSTICS statement to convert an SQL return code into a text message.
Programs that require long token message support should code the GET
DIAGNOSTICS statement instead of DSNTIAR. For more information about GET
DIAGNOSTICS, see [“The GET DIAGNOSTICS statement” on page 90

DSNTIAR syntax
FCALL DSNTIAR,(sqlca, message, Irecl), MF=(E,PARM)

The DSNTIAR parameters have the following meanings:

sqlca
An SQL communication area.

message
An output area, defined as a varying-length string, in which DSNTIAR places
the message text. The first halfword contains the length of the remaining area;
its minimum value is 240.

The output lines of text, each line being the length specified in Irecl, are put
into this area. For example, you could specify the format of the output area as:

LINES EQU 10
LRECL EQU 132

MESSAGE DS H,CL(LINES*LRECL)
ORG ~ MESSAGE
MESSAGEL DC AL2 (LINES*LRECL)

MESSAGE1 DS CL(LRECL) text Tine 1
MESSAGE2 DS CL(LRECL) text Tine 2
MESSAGEn DS CL(LRECL) text Tine n

CALL DSNTIAR, (SQLCA,MESSAGE,LRECL),MF=(E,PARM)
where MESSAGE is the name of the message output area, LINES is the

number of lines in the message output area, and LRECL is the length of each
line.

148 Application Programming and SQL Guide

Assembler

Irecl
A fullword containing the logical record length of output messages, between 72
and 240.

The expression MF=(E,PARM) is an z/OS macro parameter that indicates dynamic
execution. PARM is the name of a data area that contains a list of pointers to the
call parameters of DSNTIAR.

See|Appendix B, “Sample applications,” on page 935 for instructions on how to
access and print the source code for the sample program.

— CICS
If your CICS application requires CICS storage handling, you must use the
subroutine DSNTIAC instead of DSNTIAR. DSNTIAC has the following
syntax:

CALL DSNTIAC, (eib,commarea,sqlca,msg, lrecl) ,MF=(E,PARM)

DSNTIAC has extra parameters, which you must use for calls to routines that
use CICS commands.

eib EXEC interface block

commarea communication area

For more information on these parameters, see the appropriate application
programming guide for CICS. The remaining parameter descriptions are the
same as those for DSNTIAR. Both DSNTIAC and DSNTIAR format the
SQLCA in the same way.

You must define DSNTIA1 in the CSD. If you load DSNTIAR or DSNTIAC,
you must also define them in the CSD. For an example of CSD entry
generation statements for use with DSNTIAC, see member DSNSFRDO in the
data set prefix. SDSNSAMP.

The assembler source code for DSNTIAC and job DSNTEJ5A, which
assembles and link-edits DSNTIAC, are also in the data set prefix. SDSNSAMP.

Macros for assembler applications
Data set DSN810.SDSNMACS contains all DB2 macros that are available for use.

Coding SQL statements in a C or C++ application

This section helps you with the programming techniques that are unique to coding
SQL statements within a C or C++ program. Throughout this book, C is used to
represent either C or C++, except where noted otherwise.

Defining the SQL communication area

A C program that contains SQL statements must include one or both of the
following host variables:

* An SQLCODE variable, declared as long integer. For example:
long SQLCODE;
* An SQLSTATE variable, declared as a character array of length 6. For example:

Chapter 9. Embedding SQL statements in host languages 149

char SQLSTATE[6];

Alternatively, you can include an SQLCA, which contains the SQLCODE and
SQLSTATE variables.

DB2 sets the SQLCODE and SQLSTATE values after each SQL statement executes.
An application can check these values to determine whether the last SQL statement
was successful. All SQL statements in the program must be within the scope of the
declaration of the SQLCODE and SQLSTATE variables.

Whether you define the SQLCODE or SQLSTATE variable or an SQLCA in your
program depends on whether you specify the precompiler option STDSQL(YES) to
conform to SQL standard, or STDSQL(NO) to conform to DB2 rules.

If you specify STDSQL(YES)

When you use the precompiler option STDSQL(YES), do not define an SQLCA. If
you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors.

If you declare an SQLSTATE variable, it must not be an element of a structure. You
must declare the host variables SQLCODE and SQLSTATE within the BEGIN
DECLARE SECTION and END DECLARE SECTION statements in your program
declarations.

If you specify STDSQL(NO)

When you use the precompiler option STDSQL(NO), include an SQLCA explicitly.
You can code the SQLCA in a C program, either directly or by using the SQL
INCLUDE statement. The SQL INCLUDE statement requests a standard SQLCA
declaration:

EXEC SQL INCLUDE SQLCA;

A standard declaration includes both a structure definition and a static data area
named ’sqlca’. See Chapter 5 of [DB2 SQL Referencel for more information about the
INCLUDE statement and Appendix D of [DB2 SQL Reference for a complete
description of SQLCA fields.

Defining SQL descriptor areas

The following statements require an SQLDA:

e CALL ... USING DESCRIPTOR descriptor-name

* DESCRIBE statement-name INTO descriptor-name

* DESCRIBE CURSOR host-variable INTO descriptor-name
* DESCRIBE INPUT statement-name INTO descriptor-name
* DESCRIBE PROCEDURE host-variable INTO descriptor-name
* DESCRIBE TABLE host-variable INTO descriptor-name

* EXECUTE ... USING DESCRIPTOR descriptor-name

e FETCH ... USING DESCRIPTOR descriptor-name

e OPEN ... USING DESCRIPTOR descriptor-name

* PREPARE ... INTO descriptor-name

Unlike the SQLCA, more than one SQLDA can exist in a program, and an SQLDA
can have any valid name. You can code an SQLDA in a C program, either directly
or by using the SQL INCLUDE statement. The SQL INCLUDE statement requests a
standard SQLDA declaration:

EXEC SQL INCLUDE SQLDA;

150 Application Programming and SQL Guide

Cc

A standard declaration includes only a structure definition with the name "sqlda’.
See Chapter 5 of [DB2 SQL Reference| for more information about the INCLUDE
statement and Appendix E of |[DB2 SQL Reference|for a complete description of
SQLDA fields.

You must place SQLDA declarations before the first SQL statement that references
the data descriptor, unless you use the precompiler option TWOPASS. You can
place an SQLDA declaration wherever C allows a structure definition. Normal C
scoping rules apply.

Embedding SQL statements

You can code SQL statements in a C program wherever you can use executable
statements.

Each SQL statement in a C program must begin with EXEC SQL and end with a
semicolon (;). The EXEC and SQL keywords must appear on one line, but the
remainder of the statement can appear on subsequent lines.

In general, because C is case sensitive, use uppercase letters to enter all SQL
keywords. However, if you use the FOLD precompiler suboption, DB2 folds
lowercase letters in SBCS SQL ordinary identifiers to uppercase. For information
about host language precompiler options, see[Table 63 on page 469|

You must keep the case of host variable names consistent throughout the program.
For example, if a host variable name is lowercase in its declaration, it must be
lowercase in all SQL statements. You might code an UPDATE statement in a C
program as follows:
EXEC SQL

UPDATE DSN8810.DEPT

SET MGRNO = :mgr_num

WHERE DEPTNO = :int_dept;

Comments: You can include C comments (/* ... */) within SQL statements
wherever you can use a blank, except between the keywords EXEC and SQL. You
can use single-line comments (starting with //) in C language statements, but not
in embedded SQL. You cannot nest comments.

To include DBCS characters in comments, you must delimit the characters by a
shift-out and shift-in control character; the first shift-in character in the DBCS
string signals the end of the DBCS string. You can include SQL comments in any
embedded SQL statement.

Continuation for SQL statements: You can use a backslash to continue a
character-string constant or delimited identifier on the following line.

Declaring tables and views: Your C program should use the DECLARE TABLE
statement to describe each table and view the program accesses. You can use the
DB2 declarations generator (DCLGEN) to generate the DECLARE TABLE
statements. For more information, see [Chapter 8, “Generating declarations for your|
tables using DCLGEN,” on page 127

Including code: To include SQL statements or C host variable declarations from a
member of a partitioned data set, add the following SQL statement to the source
code where you want to include the statements:

EXEC SQL INCLUDE member-name:;

Chapter 9. Embedding SQL statements in host languages 151

You cannot nest SQL INCLUDE statements. Do not use C #include statements to
include SQL statements or C host variable declarations.

Margins: Code SQL statements in columns 1 through 72, unless you specify other
margins to the DB2 precompiler. If EXEC SQL is not within the specified margins,
the DB2 precompiler does not recognize the SQL statement.

Names: You can use any valid C name for a host variable, subject to the following
restrictions:

¢ Do not use DBCS characters.

* Do not use external entry names or access plan names that begin with "DSN’,
and do not use host variable names that begin with ‘SQL’ (in any combination of
uppercase or lowercase letters). These names are reserved for DB2.

Nulls and NULs: C and SQL differ in the way they use the word null. The C
language has a null character (NUL), a null pointer (NULL), and a null statement
(just a semicolon). The C NUL is a single character that compares equal to 0. The C
NULL is a special reserved pointer value that does not point to any valid data
object. The SQL null value is a special value that is distinct from all non-null

values and denotes the absence of a (nonnull) value. In this chapter, NUL is the
null character in C and NULL is the SQL null value.

Sequence numbers: The source statements that the DB2 precompiler generates do
not include sequence numbers.

Statement labels: You can precede SQL statements with a label.

Trigraph characters: Some characters from the C character set are not available on
all keyboards. You can enter these characters into a C source program using a
sequence of three characters called a trigraph. The trigraph characters that DB2
supports are the same as those that the C compiler supports.

WHENEVER statement: The target for the GOTO clause in an SQL WHENEVER
statement must be within the scope of any SQL statements that the statement
WHENEVER affects.

Special C considerations:

* Using the C/370" multi-tasking facility, in which multiple tasks execute SQL
statements, causes unpredictable results.

* You must run the DB2 precompiler before running the C preprocessor.
e The DB2 precompiler does not support C preprocessor directives.

* If you use conditional compiler directives that contain C code, either place them
after the first C token in your application program, or include them in the C
program using the #include preprocessor directive.

Refer to the appropriate C documentation for more information about C
preprocessor directives.

Using host variables and host variable arrays

You must explicitly declare each host variable and each host variable array before
using them in an SQL statement if you specify the ONEPASS precompiler option.
If you use the precompiler option TWOPASS, you must declare each host variable
before using it in the DECLARE CURSOR statement.

152 Application Programming and SQL Guide

Precede C statements that define the host variables and host variable arrays with
the BEGIN DECLARE SECTION statement, and follow the C statements with the
END DECLARE SECTION statement. You can have more than one host variable

declaration section in your program.

A colon (:) must precede all host variables and all host variable arrays in an SQL
statement.

The names of host variables and host variable arrays must be unique within the
program, even if the variables and variable arrays are in different blocks, classes,
or procedures. You can qualify the names with a structure name to make them
unique.

An SQL statement that uses a host variable or host variable array must be within
the scope of the statement that declares that variable or array. You define host
variable arrays for use with multiple-row FETCH and INSERT statements.

Declaring host variables

Only some of the valid C declarations are valid host variable declarations. If the
declaration for a variable is not valid, any SQL statement that references the
variable might result in the message UNDECLARED HOST VARIABLE.

Numeric host variables: shows the syntax for declarations of numeric
host variables.

v

float

Eauto—:' i:const
extern volatile— int
static —short |_ —l

—double

sqlint32
int

]ong_L—I_
int

—long long |_ —l

—decimal—(—integer |_)—
,—integer—l

>'—|:variab le-name
*pointer-name

—| |—=express ion—I ’

Figure 40. Numeric host variables

Notes:
1. The SQL statement coprocessor is required if you use a pointer as a host
variable.

Character host variables: The four valid forms for character host variables are:
* Single-character form

* NUL-terminated character form

* VARCHAR structured form

« CLOBs

Chapter 9. Embedding SQL statements in host languages 153

The following figures show the syntax for forms other than CLOBs. See

for the syntax of CLOBs.

shows the syntax for declarations of single-character host variables.

auto |:const
extern volatile—
static

char—Y——variable-name ;
I—uns1'gned—| I—*point‘er-name—| |—=expression—| '

>

Figure 41. Single-character form

Notes:

1. The SQL statement coprocessor is required if you use a pointer as a host

variable.

shows the syntax for declarations of NUL-terminated character host

variables.

y

auto
extern
static

char
|—uns1’gned—|

i:const
volatile—

>—|:' variable—name:l—[—length—] ;
*pointer-name |—=expression—I

v

Figure 42. NUL-terminated character form

Notes:
1. On input, the string contained by the variable must be NUL-terminated.
2. On output, the string is NUL-terminated.

3. A NUL-terminated character host variable maps to a varying-length character

string (except for the NUL).

4. The SQL statement coprocessor is required if you use a pointer as a host
variable.

[Figure 43 on page 155 shows the syntax for declarations of varying-length
character host variables that use the VARCHAR structured form.

154 Application Programming and SQL Guide

int
{ —short—r——l—var—l—

v

auto i:const
extern volatile—
static

> |_ _| char—var-2—[—length—]— ; — }
unsigned

struct
I_tag_l

v

>'—|:variable-name_| B 7 ;
*pointer-name ={expression, expression}

Figure 43. VARCHAR structured form

Notes:
1. wvar-1 and var-2 must be simple variable references. You cannot use them as host
variables.

2. You can use the struct tag to define other data areas that you cannot use as
host variables.

3. The SQL statement coprocessor is required if you use a pointer as a host
variable.

Example: The following examples show valid and invalid declarations of the
VARCHAR structured form:

EXEC SQL BEGIN DECLARE SECTION;

/* valid declaration of host variable VARCHAR vstring =/
struct VARCHAR {

short Ten;

char s[10];

} vstring;

/* invalid declaration of host variable VARCHAR wstring */
struct VARCHAR wstring;

Graphic host variables: The four valid forms for graphic host variables are:
* Single-graphic form

* NUL-terminated graphic form

* VARGRAPHIC structured form.

* DBCLOBs

You can use the C data type sqldbchar to define a host variable that inserts,
updates, deletes, and selects data from GRAPHIC or VARGRAPHIC columns.

The following figures show the syntax for forms other than DBCLOBs. See
[Figure 49 on page 159 for the syntax of DBCLOBs.

[Figure 44 on page 156 shows the syntax for declarations of single-graphic host
variables.

Chapter 9. Embedding SQL statements in host languages 155

v

exte volatile—
static

> sq]dbchar—[variable—name 5 >«
auto—:‘ i:const *pointer-nameJ |—=expr‘essionJ
rn

Figure 44. Single-graphic form

Notes:
1. The SQL statement coprocessor is required if you use a pointer as a host
variable.

The single-graphic form declares a fixed-length graphic string of length 1. You
cannot use array notation in variable-name.

shows the syntax for declarations of NUL-terminated graphic host

variables.
> sqldbchar—Y——variable-name [—length—] 5 ><
auto |:const |:*pointer—name:| I—:expr'ession—|
extern volatile—
static

Figure 45. Nul-terminated graphic form

Notes:
1. length must be a decimal integer constant greater than 1 and not greater than
16352.

2. On input, the string in variable-name must be NUL-terminated.

w

On output, the string is NUL-terminated.

4. The NUL-terminated graphic form does not accept single-byte characters into
variable-name.

5. The SQL statement coprocessor is required if you use a pointer as a host
variable.

[Figure 46 on page 157 shows the syntax for declarations of graphic host variables
that use the VARGRAPHIC structured form.

156 Application Programming and SQL Guide

[
>p

v

int
{ —short—r——l—var—l— ;

struct
auto i:const l—tag—l
extern volatile—

static

»—sqldbchar—var-2—[—length—]— ; — } variable-name
|:*pointer‘-name—l |—={ expression, expression}—|

v

Figure 46. VARGRAPHIC structured form

Notes:

1. length must be a decimal integer constant greater than 1 and not greater than
16352.

2. wvar-1 must be less than or equal to length.

3. ovar-1 and var-2 must be simple variable references. You cannot use them as host
variables.

4. You can use the struct tag to define other data areas that you cannot use as
host variables.

5. The SQL statement coprocessor is required if you use a pointer as a host
variable.

Example: The following examples show valid and invalid declarations of graphic
host variables that use the VARGRAPHIC structured form:

EXEC SQL BEGIN DECLARE SECTION;

/* valid declaration of host variable structured vgraph */
struct VARGRAPH {

short Ten;

sqldbchar d[10];

} vgraph;

/* invalid declaration of host variable structured wgraph */
struct VARGRAPH wgraph;

Result set locators: [Figure 47 on page 158|shows the syntax for declarations of
result set locators. See [Chapter 25, “Using stored procedures for client/server|
fporocessing,” on page 573|for a discussion of how to use these host variables.

Chapter 9. Embedding SQL statements in host languages 157

A\
\

auto
extern—-
static—

register—

i:const
volatile—

SQL TYPE IS—RESULT_SET_LOCATOR—VARYING >

>'—|:variable-name_|
*pointer-name

L.

init-val ue—|

Figure 47. Result set locators

Table Locators: [Figure 48] shows the syntax for declarations of table locators. See

“ Accessing transition tables in a user-defined function or stored procedure” on|

page 33§| for a discussion of how to use these host variables.

y
Y

auto
extern—-y
static—

register—

i:const
volatile—

SQL TYPE IS—TABLE LIKE—table-name—AS LOCATOR >

>'—|:variab le-name
*pointer-name

—| l—init—value—l ’

Y
A

Figure 48. Table locators

LOB Variables and Locators: [Figure 49 on page 159|shows the syntax for
declarations of BLOB, CLOB, and DBCLOB host variables and locators. See

(Chapter 14, “Programming for large objects,” on page 289| for a discussion of how

to use these host variables.

158 Application Programming and SQL Guide

H o H H H* - - — -

CLOB

CHARACTER LARGE OBJECT——
—ECHAR LARGE OBJECT

»>>- SQL TYPE IS >
auto i:const
extern—- volatile—
static——
register—
> BINARY LARGE OBJECT—I——(—Zength) Y _variable-name >
BLOB —K— I—*pointer-name—| |—init-value—|

<

[«p]

—DBCLOB

—BLOB_LOCATOR

- CLOB_LOCATOR
L_DBCLOB_LOCAT

=

Figure 49. LOB variables and locators

ROWIDs: |Figure 50| shows the syntax for declarations of ROWID host variables.
See [Chapter 14, “Programming for large objects,” on page 289| for a discussion of
how to use these host variables.

auto
extern—-y
static—
register—

-

;ariable—name:l—SQL TYPE IS—ROWID—; ><
const I—*pointer-name

volatile—

Figure 50. ROWID variables

Declaring host variable arrays

Only some of the valid C declarations are valid host variable array declarations. If
the declaration for a variable array is not valid, then any SQL statement that
references the variable array might result in the message UNDECLARED HOST
VARIABLE ARRAY.

For both C and C++, you cannot specify the _packed attribute on the structure
declarations for varying-length character arrays, varying-length graphic arrays, or
LOB arrays that are to be used in multiple-row INSERT and FETCH statements. In
addition, the #pragma pack(1l) directive cannot be in effect if you plan to use these
arrays in multiple-row statements.

Numeric host variable arrays:|Figure 51 on page 160/ shows the syntax for
declarations of numeric host variable arrays.

Chapter 9. Embedding SQL statements in host languages 159

> float >
auto i:const |—un'signed—| —double
extern volatile— int
static |_ —l

long
—[short—l

int
—long long |_ —l

decimal—(—integer |_)—
,—integer—l

»—Y variable-name—[—dimension—]

—

L=—{—Y expression——}

Figure 51. Numeric host variable arrays

Note:

1. dimension must be an integer constant between 1 and 32767.

Example: The following example shows a declaration of a numeric host variable

array:

EXEC SQL BEGIN DECLARE SECTION;
/* declaration of numeric host variable array */
Tong serial_num[10];

EXEC SQL END DECLARE SECTION;

Character host variable arrays: The three valid forms for character host variable

arrays are:

¢ NUL-terminated character form
¢ VARCHAR structured form

e CLOBs

The following figures show the syntax for forms other than CLOBs. See
for the syntax of CLOBs.

[Figure 52 on page 161| shows the syntax for declarations of NUL-terminated

character host variable arrays.

160 Application Programming and SQL Guide

char »>
auto i:const I—unsigned—|
extern volatile—
static
»—Y variable-name—[—dimension—]—[—length—] : >

-

Y _expression——]}

L

Figure 52. NUL-terminated character form

Notes:

1. On input, the strings contained in the variable arrays must be NUL-terminated.

2. On output, the strings are NUL-terminated.

3. The strings in a NUL-terminated character host variable array map to
varying-length character strings (except for the NUL).

4. dimension must be an integer constant between 1 and 32767.

shows the syntax for declarations of varying-length character host
variable arrays that use the VARCHAR structured form.

[

| 2

auto i:const
extern volatile—
static

|_ _| char—var-2—[—length—]— ; — }
unsigned

int
struct— { —shor‘t—r——l—var-l— ; g

»—Y variable-name—[—dimension—] H >4

-

Y _expression——}

L

Figure 53. VARCHAR structured form

Notes:

1.

2.

var-1 must be a simple variable reference, and var-2 must be a variable array
reference.

You can use the struct tag to define other data areas, which you cannot use as
host variable arrays.

dimension must be an integer constant between 1 and 32767.

Chapter 9. Embedding SQL statements in host languages 161

Example: The following examples show valid and invalid declarations of
VARCHAR host variable arrays:
EXEC SQL BEGIN DECLARE SECTION;
/* valid declaration of VARCHAR host variable array */
struct VARCHAR {
short Ten;
char s[18];
} name[10];

/* invalid declaration of VARCHAR host variable array */
struct VARCHAR name[10];

Graphic host variable arrays: The two valid forms for graphic host variable arrays
are:

* NUL-terminated graphic form

* VARGRAPHIC structured form.

You can use the C data type sqldbchar to define a host variable array that inserts,
updates, deletes, and selects data from GRAPHIC or VARGRAPHIC columns.

shows the syntax for declarations of NUL-terminated graphic host
variable arrays.

auto i:
extern
static

v

sqldbchar
const |—unsigned—|

volatile—

f’
=—{

»—Y variable-name—[—dimension—]—[—length—] J H ><
—1

expression—

Figure 54. NUL-terminated graphic form

Notes:
1. length must be a decimal integer constant greater than 1 and not greater than
16352.

2. On input, the strings contained in the variable arrays must be NUL-terminated.

w

On output, the string is NUL-terminated.

4. The NUL-terminated graphic form does not accept single-byte characters into
the variable array.

5. dimension must be an integer constant between 1 and 32767.

[Figure 55 on page 163| shows the syntax for declarations of graphic host variable
arrays that use the VARGRAPHIC structured form.

162 Application Programming and SQL Guide

y
y
v

int
struct— { —short—r——l—var—l— ;

auto i:const
extern volatile—

static

v

> |_ _| sqldbchar—var-2—[—Ilength—]— ; — }
unsigned

»—Y variable-name—[—dimension—] H >

-

L=—{—Y expression——}

Figure 55. VARGRAPHIC structured form

Notes:

1. length must be a decimal integer constant greater than 1 and not greater than
16352.

2. wvar-1 must be a simple variable reference, and var-2 must be a variable array
reference.

3. You can use the struct tag to define other data areas, which you cannot use as
host variable arrays.

4. dimension must be an integer constant between 1 and 32767.

Example: The following examples show valid and invalid declarations of graphic
host variable arrays that use the VARGRAPHIC structured form:

EXEC SQL BEGIN DECLARE SECTION;
/* valid declaration of host variable array vgraph x/
struct VARGRAPH {
short len;
sqldbchar d[10];
} vgraph[20];

/* invalid declaration of host variable array vgraph */
struct VARGRAPH vgraph[20];

LOB variable arrays and locators: [Figure 56 on page 164 shows the syntax for
declarations of BLOB, CLOB, and DBCLOB host variable arrays and locators. See
(Chapter 14, “Programming for large objects,” on page 289 for a discussion of how
to use LOB variables.

Chapter 9. Embedding SQL statements in host languages 163

A\
\

»—Y variable-name—[—dimension—]

auto i:const
extern—- volatile—
static—

register—

BLOB

BINARY LARGE 0BJ ECT—I—

CLOB

CHARACTER LARGE OBJECT——
—ECHAR LARGE OBJECT

—DBCLOB

SQL TYPE IS

— (—Llength)

-
|

<

[ep}

—BLOB_LOCATOR
-CLOB_LOCATOR—
L_DBCLOB_LOCATOR—

—

L=—{—Y expression——}

\4
A

Figure 56. LOB variable arrays and locators

Note:

1.

dimension must be an integer constant between 1 and 32767.

ROWIDs: |Figure 55] shows the syntax for declarations of ROWID variable arrays.
See [Chapter 14, “Programming for large objects,” on page 289 for a discussion of
how to use these host variable arrays.

auto i:const
extern—- volatile—
static—

register—

SQL TYPE IS—ROWID—Y—variable-name—[—dimension—]

Figure 57. ROWID variable arrays

Note:

1.

dimension must be an integer constant between 1 and 32767.

Using host structures

A C host structure contains an ordered group of data fields. For example:

164 Application Programming and SQL Guide

struct {char c1[3];
struct {short len;
char data[5];
ez,
char c¢3[2];
}target;

In this example, target is the name of a host structure consisting of the c1, c2, and
c3 fields. cI and c3 are character arrays, and c2 is the host variable equivalent to
the SQL VARCHAR data type. The target host structure can be part of another host
structure but must be the deepest level of the nested structure.

shows the syntax for declarations of host structures.

auto i:const
extern volatile—
static

-
>

\{

struct {
I—packed—| l—tag—l

Yy

v float var-1—; } >
—double

—short |_1nt—|
sqlint32
1on9_|_m—t—|_
—Tong long rmt—l

—decimal—(—integer |_,— intege"—l a

—varchar structure
—vargraphic structure
—SQL TYPE IS ROWID
—L0B data type

char—var-2 5
|:unsigned:| |—[—Zength—]—|

‘—sqldbchar—var-5

|—[—length—]—|

A\
A

»—variable-name

|—=exp ress ion—|

Figure 58. Host structures

[Figure 59 on page 166 shows the syntax for VARCHAR structures that are used
within declarations of host structures.

Chapter 9. Embedding SQL statements in host languages 165

int
short |_ —l var-3—; >

»»—struct {
l—tag—l |—s1' gned—|

»
>

Y
A

|_ _| char—var-4—[—length—]—;—}
unsigned

Figure 59. VARCHAR-structure

shows the syntax for VARGRAPHIC structures that are used within
declarations of host structures.

»—struct { short var-6—;—sqldbchar—var-7—[—length—] —;—}——»<
|—tagJ |—s1' gnedJ

Figure 60. VARGRAPHIC-structure

shows the syntax for LOB data types that are used within declarations of
host structures.

v
A

»»—SQL TYPE IS BINARY LARGE OBJECT—I——(—Zength)
BLOB
—ECHARACTER LARGE OBJECT——

<

CHAR LARGE OBJECT
CLOB
LDBCLOB
—BLOB_LOCATOR
CLOB_LOCATOR
L_DBCLOB_LOCATOR

o

Figure 61. LOB data type

Determining equivalent SQL and C data types

describes the SQL data type, and base SQLTYPE and SQLLEN values, that
the precompiler uses for the host variables it finds in SQL statements. If a host
variable appears with an indicator variable, the SQLTYPE is the base SQLTYPE
plus 1.

Table 13. SQL data types the precompiler uses for C declarations

SQLTYPE of host SQLLEN of host

C data type variable variable SQL data type
short int 500 2 SMALLINT
long int 496 4 INTEGER
long long 484 19inbyte1,0in *

byte 2
decimal(p,s)’ 484 p inbyte 1, s in DECIMAL(p,s)"
byte 2

166 Application Programming and SQL Guide

Table 13. SQL data types the precompiler uses for C declarations (continued)

SQLTYPE of host

SQLLEN of host

C data type variable variable SQL data type

float 480 4 FLOAT (single
precision)

double 480 8 FLOAT (double
precision)

Single-character form 452 1 CHAR(1)

NUL-terminated 460 n VARCHAR (n-1)

character form

VARCHAR structured 448 n VARCHAR(n)

form 1<=n<=255

VARCHAR structured 456 n VARCHAR(n)

form

n>255

Single-graphic form 468 1 GRAPHIC(1)

NUL-terminated 400 n VARGRAPHIC (n-1)

graphic form

(sqldbchar)

VARGRAPHIC 464 n VARGRAPHIC(n)

structured form

1<=n<128

VARGRAPHIC 472 n VARGRAPHIC(n)

structured form

n>127

SQL TYPE IS 972 4 Result set locator?

RESULT_SET

_LOCATOR

SQL TYPE IS 976 4 Table locator?

TABLE LIKE

table-name

AS LOCATOR

SQL TYPE IS 960 4 BLOB locator?

BLOB_LOCATOR

SQL TYPE IS 964 4 CLOB locator?

CLOB_LOCATOR

SQL TYPE IS 968 4 DBCLOB locator?

DBCLOB_LOCATOR

SQL TYPE IS 404 n BLOB(n)

BLOB(n)

1=n=2147483647

SQL TYPE IS 408 n CLOB(n)

CLOB(n)

1=n=2147483647

SQL TYPE IS 412 n DBCLOB(n)®

DBCLOB(n)

1=n=1073741823

SQL TYPE IS ROWID 904 40 ROWID

Chapter 9. Embedding SQL statements in host languages

167

Table 13. SQL data types the precompiler uses for C declarations (continued)
SQLTYPE of host SQLLEN of host

C data type variable variable SQL data type
Notes:
1. p is the precision; in SQL terminology, this the total number of digits. In C, this is called
the size.

s is the scale; in SQL terminology, this is the number of digits to the right of the decimal
point. In C, this is called the precision.

C++ does not support the decimal data type.

Do not use this data type as a column type.

w

n is the number of double-byte characters.
No exact equivalent. Use DECIMAL(19,0).

helps you define host variables that receive output from the database. You
can use the table to determine the C data type that is equivalent to a given SQL
data type. For example, if you retrieve TIMESTAMP data, you can use the table to
define a suitable host variable in the program that receives the data value.

shows direct conversions between DB2 data types and host data types.
However, a number of DB2 data types are compatible. When you do assignments
or comparisons of data that have compatible data types, DB2 does conversions
between those compatible data types. See [Table 1 on page 5 for information about
compatible data types.

Table 14. SQL data types mapped to typical C declarations

SQL data type C data type Notes

SMALLINT short int

INTEGER long int

DECIMAL(p,s) or decimal You can use the double data type if your

NUMERIC(p,s) C compiler does not have a decimal data
type; however, double is not an exact
equivalent.

REAL or FLOAT(n) float 1<=n<=21

DOUBLE PRECISION or double 22<=n<=53

FLOAT(n)

CHAR(1) single-character form

CHAR(n) no exact equivalent If n>1, use NUL-terminated character form

VARCHAR(n) NUL-terminated character form If data can contain character NULs (\0),
use VARCHAR structured form. Allow at
least n+1 to accommodate the
NUL-terminator.

VARCHAR structured form
GRAPHIC(1) single-graphic form
GRAPHIC(n) no exact equivalent If n>1, use NUL-terminated graphic form.

n is the number of double-byte characters.

168 Application Programming and SQL Guide

Table 14. SQL data types mapped to typical C declarations (continued)

SQL data type

C data type

Notes

VARGRAPHIC(n)

NUL-terminated graphic form

If data can contain graphic NUL values
(\O\0), use VARGRAPHIC structured
form. Allow at least n+1 to accommodate
the NUL-terminator. 7 is the number of
double-byte characters.

VARGRAPHIC structured form

n is the number of double-byte characters.

DATE

NUL-terminated character form

If you are using a date exit routine, that
routine determines the length. Otherwise,
allow at least 11 characters to
accommodate the NUL-terminator.

VARCHAR structured form

If you are using a date exit routine, that
routine determines the length. Otherwise,
allow at least 10 characters.

TIME

NUL-terminated character form

If you are using a time exit routine, the
length is determined by that routine.
Otherwise, the length must be at least 7;
to include seconds, the length must be at
least 9 to accommodate the
NUL-terminator.

VARCHAR structured form

If you are using a time exit routine, the
length is determined by that routine.
Otherwise, the length must be at least 6;
to include seconds, the length must be at
least 8.

TIMESTAMP

NUL-terminated character form

The length must be at least 20. To include
microseconds, the length must be 27. If the
length is less than 27, truncation occurs on
the microseconds part.

VARCHAR structured form

The length must be at least 19. To include
microseconds, the length must be 26. If the
length is less than 26, truncation occurs on
the microseconds part.

Result set locator

SQL TYPE IS RESULT_SET_LOCATOR

Use this data type only for receiving result
sets. Do not use this data type as a
column type.

Table locator

SQL TYPE IS TABLE LIKE table-name AS
LOCATOR

Use this data type only in a user-defined
function or stored procedure to receive
rows of a transition table. Do not use this
data type as a column type.

BLOB locator

SQL TYPE IS BLOB_LOCATOR

Use this data type only to manipulate data
in BLOB columns. Do not use this data
type as a column type.

CLOB locator

SQL TYPE IS CLOB_LOCATOR

Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.

DBCLOB locator

SQL TYPE IS DBCLOB_LOCATOR

Use this data type only to manipulate data
in DBCLOB columns. Do not use this data
type as a column type.

BLOB(n)

SQL TYPE IS BLOB(n)

1=n=2147483647

CLOB(n)

SQL TYPE IS CLOB(n)

1=n=2147483647

Chapter 9. Embedding SQL statements in host languages 169

Cc

Table 14. SQL data types mapped to typical C declarations (continued)

SQL data type C data type Notes

DBCLOB(n SQL TYPE IS DBCLOB(n) n is the number of double-byte characters.
1=n=1073741823

ROWID SQL TYPE IS ROWID

Notes on C variable declaration and usage
You should be aware of the following considerations when you declare C variables.

C data types with no SQL equivalent: C supports some data types and storage
classes with no SQL equivalents, for example, register storage class, typedef, long
long, and the pointer.

SQL data types with no C equivalent: If your C compiler does not have a decimal
data type, no exact equivalent exists for the SQL DECIMAL data type. In this case,
to hold the value of such a variable, you can use:

* An integer or floating-point variable, which converts the value. If you choose
integer, you will lose the fractional part of the number. If the decimal number
can exceed the maximum value for an integer, or if you want to preserve a
fractional value, you can use floating-point numbers. Floating-point numbers are
approximations of real numbers. Therefore, when you assign a decimal number
to a floating-point variable, the result might be different from the original
number.

* A character-string host variable. Use the CHAR function to get a string
representation of a decimal number.

* The DECIMAL function to explicitly convert a value to a decimal data type, as
in this example:

long duration=10100; /* 1 year and 1 month x/
char result_dt[11];

EXEC SQL SELECT START_DATE + DECIMAL(:duration,8,0)
INTO :result_dt FROM TABLEL;

Floating-point host variables: All floating-point data is stored in DB2 in

System /390 hexadecimal floating-point format. However, your host variable data
can be in System/390 hexadecimal floating-point format or IEEE binary
floating-point format. DB2 uses the FLOAT precompiler option to determine
whether your floating-point host variables are in IEEE binary floating-point or
System /390 hexadecimal floating-point format. DB2 does no checking to determine
whether the contents of a host variable match the precompiler option. Therefore,
you need to ensure that your floating-point data format matches the precompiler
option.

Graphic host variables in user-defined function: The SQLUDF file, which is in data
set DSN810.SDSNC.H, contains many data declarations for C language
user-defined functions. SQLUDF contains the typedef sqldbchar, which you should
use instead of wchar_t. Using sqldbchar lets you manipulate DBCS and Unicode
UTF-16 data in the same format in which it is stored in DB2. Using sqldbchar also
makes applications easier to port to other DB2 platforms.

Special Purpose C Data Types: The locator data types are C data types and SQL
data types. You cannot use locators as column types. For information about how to
use these data types, see the following sections:

170 Application Programming and SQL Guide

Result set locator
Chapter 25, “Using stored procedures for client/server processing,”|

on page 573|

Table locator |[“Accessing transition tables in a user-defined function or stored|
procedure” on page 335|

LOB locators [Chapter 14, “Programming for large objects,” on page 289

String host variables: If you assign a string of length n to a NUL-terminated
variable with a length that is:

* Less than or equal to 1, DB2 inserts the characters into the host variable up to a
length of (n-1), and appends a NUL at the end of the string. DB2 sets
SQLWARN]J1] to W and any indicator variable you provide to the original length
of the source string.

* Equal to n+1, DB2 inserts the characters into the host variable and appends a
NUL at the end of the string.

* Greater than n+1, the rules depend on whether the source string is a value of a
fixed-length string column or a varying-length string column. If the source is a
fixed-length string, DB2 pads it with blanks on assignment to the
NUL-terminated variable depending on whether the precompiler option
PADNTSTR is specified. If the source is a varying-length string, DB2 assigns it to
the first n bytes of the variable and appends a NUL at the end of the string. For
information about host language precompiler options, see [Table 63 on page 469

PREPARE or DESCRIBE statements: You cannot use a host variable that is of the
NUL-terminated form in either a PREPARE or DESCRIBE statement when you use
the DB2 precompiler. However, if you use the SQL statement coprocessor for either
C or C++, you can use host variables of the NUL-terminated form in PREPARE,
DESCRIBE, and EXECUTE IMMEDIATE statements.

L-literals: DB2 tolerates L-literals in C application programs. DB2 allows properly
formed L-literals, although it does not check for all the restrictions that the C
compiler imposes on the L-literal. You can use DB2 graphic string constants in SQL
statements to work with the L-literal. Do not use L-literals in SQL statements.

Overflow: Be careful of overflow. For example, suppose you retrieve an INTEGER
column value into a short integer host variable and the column value is larger than
32767. You get an overflow warning or an error, depending on whether you
provide an indicator variable.

Truncation: Be careful of truncation. Ensure that the host variable you declare can
contain the data and a NUL terminator, if needed. Retrieving a floating-point or
decimal column value into a long integer host variable removes any fractional part
of the value.

Notes on syntax differences for constants
You should be aware of the following syntax differences for constants.

Decimal constants versus real constants: In C, a string of digits with a decimal
point is interpreted as a real constant. In an SQL statement, such a string is
interpreted as a decimal constant. You must use exponential notation when
specifying a real (that is, floating-point) constant in an SQL statement.

Chapter 9. Embedding SQL statements in host languages 171

In C, a real (floating-point) constant can have a suffix of f or F to show a data type
of float or a suffix of 1 or L to show a type of long double. A floating-point constant
in an SQL statement must not use these suffixes.

Integer constants: In C, you can provide integer constants in hexadecimal form if
the first two characters are Ox or 0X. You cannot use this form in an SQL statement.

In C, an integer constant can have a suffix of u or U to show that it is an unsigned
integer. An integer constant can have a suffix of | or L to show a long integer. You
cannot use these suffixes in SQL statements.

Character and string constants: In C, character constants and string constants can
use escape sequences. You cannot use the escape sequences in SQL statements.
Apostrophes and quotes have different meanings in C and SQL. In C, you can use
double quotes to delimit string constants, and apostrophes to delimit character
constants. The following examples illustrate the use of quotes and apostrophes in
C.

Quotes

printf("%d Tines read. \n", num_lines);

Apostrophes

#define NUL '\0'

In SQL, you can use double quotes to delimit identifiers and apostrophes to
delimit string constants. The following examples illustrate the use of apostrophes
and quotes in SQL.

Quotes

SELECT "COL#1" FROM TBL1;

Apostrophes

SELECT COL1 FROM TBL1 WHERE COL2 = 'BELL';

Character data in SQL is distinct from integer data. Character data in C is a
subtype of integer data.

Determining compatibility of SQL and C data types

C host variables used in SQL statements must be type compatible with the

columns with which you intend to use them:

* Numeric data types are compatible with each other. A SMALLINT, INTEGER,
DECIMAL, or FLOAT column is compatible with any C host variable that is
defined as type short int, long int, decimal, float, or double.

¢ Character data types are compatible with each other. A CHAR, VARCHAR, or
CLOB column is compatible with a single-character, NUL-terminated, or
VARCHAR structured form of a C character host variable.

* Character data types are partially compatible with CLOB locators. You can

perform the following assignments:

— Assign a value in a CLOB locator to a CHAR or VARCHAR column

— Use a SELECT INTO statement to assign a CHAR or VARCHAR column to a
CLOB locator host variable.

— Assign a CHAR or VARCHAR output parameter from a user-defined function
or stored procedure to a CLOB locator host variable.

— Use a SET assignment statement to assign a CHAR or VARCHAR transition
variable to a CLOB locator host variable.

— Use a VALUES INTO statement to assigh a CHAR or VARCHAR function
parameter to a CLOB locator host variable.

172 Application Programming and SQL Guide

However, you cannot use a FETCH statement to assign a value in a CHAR or
VARCHAR column to a CLOB locator host variable.

* Graphic data types are compatible with each other. A GRAPHIC, VARGRAPHIC,
or DBCLOB column is compatible with a single character, NUL-terminated, or
VARGRAPHIC structured form of a C graphic host variable.

* Graphic data types are partially compatible with DBCLOB locators. You can
perform the following assignments:

— Assign a value in a DBCLOB locator to a GRAPHIC or VARGRAPHIC
column

— Use a SELECT INTO statement to assign a GRAPHIC or VARGRAPHIC
column to a DBCLOB locator host variable.

— Assign a GRAPHIC or VARGRAPHIC output parameter from a user-defined
function or stored procedure to a DBCLOB locator host variable.

— Use a SET assignment statement to assign a GRAPHIC or VARGRAPHIC
transition variable to a DBCLOB locator host variable.

— Use a VALUES INTO statement to assign a GRAPHIC or VARGRAPHIC
function parameter to a DBCLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a GRAPHIC
or VARGRAPHIC column to a DBCLOB locator host variable.

* Datetime data types are compatible with character host variable. A DATE, TIME,
or TIMESTAMP column is compatible with a single-character, NUL-terminated,
or VARCHAR structured form of a C character host variable.

e A BLOB column or a BLOB locator is compatible only with a BLOB host
variable.

¢ The ROWID column is compatible only with a ROWID host variable.

* A host variable is compatible with a distinct type if the host variable type is
compatible with the source type of the distinct type. For information about
assigning and comparing distinct types, see [Chapter 16, “Creating and using]
[distinct types,” on page 357

When necessary, DB2 automatically converts a fixed-length string to a
varying-length string, or a varying-length string to a fixed-length string.

Varying-length strings: For varying-length BIT data, use the VARCHAR structured
form. Some C string manipulation functions process NUL-terminated strings and
other functions process strings that are not NUL-terminated. The C string
manipulation functions that process NUL-terminated strings cannot handle bit data
because these functions might misinterpret a NUL character to be a
NUL-terminator.

Using indicator variables and indicator variable arrays

An indicator variable is a 2-byte integer (short int). An indicator variable array is
an array of 2-byte integers (short int). You use indicator variables and indicator
variable arrays in similar ways.

Using indicator variables: If you provide an indicator variable for the variable X,
when DB2 retrieves a null value for X, it puts a negative value in the indicator
variable and does not update X. Your program should check the indicator variable
before using X. If the indicator variable is negative, you know that X is null and
any value you find in X is irrelevant.

Chapter 9. Embedding SQL statements in host languages 173

When your program uses X to assign a null value to a column, the program
should set the indicator variable to a negative number. DB2 then assigns a null
value to the column and ignores any value in X. For more information about
indicator variables, see ["Using indicator variables with host variables” on page 79.|

Using indicator variable arrays: When you retrieve data into a host variable array,
if a value in its indicator array is negative, you can disregard the contents of the
corresponding element in the host variable array. For more information about
indicator variable arrays, see [“Using indicator variable arrays with host variable]
larrays” on page 83|

Declaring indicator variables: You declare indicator variables in the same way as
host variables. You can mix the declarations of the two types of variables in any
way that seems appropriate.

Example: The following example shows a FETCH statement with the declarations
of the host variables that are needed for the FETCH statement:

EXEC SQL FETCH CLS_CURSOR INTO :C1sCd,
:Day :Daylnd,
:Bgn :Bgnlnd,
:End :EndInd;

You can declare variables as follows:

EXEC SQL BEGIN DECLARE SECTION;
char Cl1sCd[8];

char Bgn[9];

char End[9];

short Day, DayInd, BgnInd, EndInd;
EXEC SQL END DECLARE SECTION;

shows the syntax for declarations of an indicator variable.

>

const
volatile—

auto i:
extern
static

int [ﬁ
short [~

variable-name ;——><
|—s i gned—| |—=—expr'ess ion—|

Figure 62. Indicator variable

Declaring indicator variable arrays:|Figure 63 on page 175/shows the syntax for
declarations of an indicator array or a host structure indicator array.

174 Application Programming and SQL Guide

int
short |_ —l

[
VV E

auto i:
extern
static

const
volatile—

v

I—s1'gned—|

»—Y variable-name—[—dimension—] : ><

|—=—exp ressi on—|

Figure 63. Host structure indicator array

Note: The dimension must be an integer constant between 1 and 32767.

Handling SQL error return codes

You can use the subroutine DSNTIAR to convert an SQL return code into a text
message. DSNTIAR takes data from the SQLCA, formats it into a message, and
places the result in a message output area that you provide in your application
program. For concepts and more information about the behavior of DSNTIAR, see
[“Calling DSNTIAR to display SQLCA fields” on page 94.

You can also use the MESSAGE_TEXT condition item field of the GET
DIAGNOSTICS statement to convert an SQL return code into a text message.
Programs that require long token message support should code the GET
DIAGNOSTICS statement instead of DSNTIAR. For more information about GET
DIAGNOSTICS, see [*The GET DIAGNOSTICS statement” on page 90

DSNTIAR syntax
’(rc = dsntiar(&sqlea, &message, &lrecl);

The DSNTIAR parameters have the following meanings:

&sqlea
An SQL communication area.

&message
An output area, in VARCHAR format, in which DSNTIAR places the message
text. The first halfword contains the length of the remaining area; its minimum
value is 240.

The output lines of text, each line being the length specified in &lrecl, are put
into this area. For example, you could specify the format of the output area as:
#define data_len 132
#define data_dim 10
struct error_struct {

short int error_Tlen;

char error_text[data_dim] [data_Tlen];

} error_message = {data_dim * data_len};

rc = dsntiar(&sqlca, &error_message, &data_len);

Chapter 9. Embedding SQL statements in host languages 175

where error_message is the name of the message output area, data_dim is the
number of lines in the message output area, and data_len is the length of each
line.

&lrecl
A fullword containing the logical record length of output messages, between 72
and 240.

To inform your compiler that DSNTIAR is an assembler language program, include
one of the following statements in your application.

For C, include:
#pragma linkage (dsntiar,0S)

For C++, include a statement similar to this:

extern "0S" short int dsntiar(struct sqlca *sqlca,
struct error_struct xerror_message,
int *data_len);

Examples of calling DSNTIAR from an application appear in the DB2 sample C
program DSN8BD3 and in the sample C++ program DSNSBE3. Both are in the
library DSN8810.SDSNSAMP. See [Appendix B, “Sample applications,” on page 935
for instructions on how to access and print the source code for the sample
programs.

— CICS
If your CICS application requires CICS storage handling, you must use the
subroutine DSNTIAC instead of DSNTIAR. DSNTIAC has the following
syntax:

rc = DSNTIAC(&eib, &commarea, &sqlca, &message, &lrecl);

DSNTIAC has extra parameters, which you must use for calls to routines that
use CICS commands.

&eib EXEC interface block

&commarea
communication area

For more information on these parameters, see the appropriate application
programming guide for CICS. The remaining parameter descriptions are the
same as those for DSNTIAR. Both DSNTIAC and DSNTIAR format the
SQLCA in the same way.

You must define DSNTIA1 in the CSD. If you load DSNTIAR or DSNTIAC,
you must also define them in the CSD. For an example of CSD entry
generation statements for use with DSNTIAC, see job DSNTEJ5A.

The assembler source code for DSNTIAC and job DSNTEJ5A, which
assembles and link-edits DSNTIAC, are in the data set prefix.SDSNSAMP.

176 Application Programming and SQL Guide

Coding considerations for C and C++

Using C++ data types as host variables: When you code SQL statements in a C++
program, you can use class members as host variables. Class members used as host
variables are accessible to any SQL statement within the class. However, you
cannot use class objects as host variables.

Coding SQL statements in a COBOL application

This section helps you with the programming techniques that are unique to coding
SQL statements within a COBOL program.

Except where noted otherwise, this information pertains to all COBOL compilers
supported by DB2 UDB for z/OS.

Defining the SQL communication area

A COBOL program that contains SQL statements must include one or both of the
following host variables:

* An SQLCODE variable declared as PIC S9(9) BINARY, PIC S9(9) COMP-4, PIC
59(9) COMP-5, or PICTURE S9(9) COMP

* An SQLSTATE variable declared as PICTURE X(5)

Alternatively, you can include an SQLCA, which contains the SQLCODE and
SQLSTATE variables.

DB2 sets the SQLCODE and SQLSTATE values after each SQL statement executes.
An application can check these values to determine whether the last SQL statement
was successful. All SQL statements in the program must be within the scope of the
declaration of the SQLCODE and SQLSTATE variables.

Whether you define the SQLCODE or SQLSTATE variable or an SQLCA in your
program depends on whether you specify the precompiler option STDSQL(YES) to
conform to SQL standard, or STDSQL(NO) to conform to DB2 rules.

If you specify STDSQL(YES)

When you use the precompiler option STDSQL(YES), do not define an SQLCA. If
you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors.

When you use the precompiler option STDSQL(YES), you must declare an
SQLCODE variable. DB2 declares an SQLCA area for you in the
WORKING-STORAGE SECTION. DB2 controls the structure and location of the
SQLCA.

If you declare an SQLSTATE variable, it must not be an element of a structure. You
must declare the SQLCODE and SQLSTATE variables within the BEGIN DECLARE
SECTION and END DECLARE SECTION statements in your program declarations.

If you specify STDSQL(NO)

When you use the precompiler option STDSQL(NO), include an SQLCA explicitly.
You can code the SQLCA in a COBOL program either directly or by using the SQL
INCLUDE statement. The SQL INCLUDE statement requests a standard SQLCA
declaration:

EXEC SQL INCLUDE SQLCA END-EXEC.

Chapter 9. Embedding SQL statements in host languages 177

COBOL

You can specify INCLUDE SQLCA or a declaration for SQLCODE wherever you
can specify a 77 level or a record description entry in the WORKING-STORAGE
SECTION. You can declare a stand-alone SQLCODE variable in either the
WORKING-STORAGE SECTION or LINKAGE SECTION.

See Chapter 5 of [DB2 SQL Reference| for more information about the INCLUDE
statement and Appendix D of [DB2 SQL Referencd for a complete description of
SQLCA fields.

Defining SQL descriptor areas

The following statements require an SQLDA:

e CALL ... USING DESCRIPTOR descriptor-name

* DESCRIBE statement-name INTO descriptor-name

* DESCRIBE CURSOR host-variable INTO descriptor-name
* DESCRIBE INPUT statement-name INTO descriptor-name
* DESCRIBE PROCEDURE host-variable INTO descriptor-name
e DESCRIBE TABLE host-variable INTO descriptor-name

* EXECUTE ... USING DESCRIPTOR descriptor-name

e FETCH ... USING DESCRIPTOR descriptor-name

e OPEN ... USING DESCRIPTOR descriptor-name

e PREPARE ... INTO descriptor-name

Unlike the SQLCA, a program can have more than one SQLDA, and an SQLDA
can have any valid name. The SQL INCLUDE statement does not provide an
SQLDA mapping for COBOL. You can define the SQLDA using one of the
following two methods:

* For COBOL programs compiled with any compiler, you can code the SQLDA
declarations in your program. For more information, see [“Using dynamic SQL in|
[COBOL” on page 572] You must place SQLDA declarations in the
WORKING-STORAGE SECTION or LINKAGE SECTION of your program,
wherever you can specify a record description entry in that section.

* For COBOL programs compiled with any compiler, you can call a subroutine
(written in C, PL/I, or assembler language) that uses the INCLUDE SQLDA
statement to define the SQLDA. The subroutine can also include SQL statements
for any dynamic SQL functions you need. For more information on using
dynamic SQL, see|Chapter 24, “Coding dynamic SQL in application programs,”|

|on page 539.|

You must place SQLDA declarations before the first SQL statement that references
the data descriptor. An SQL statement that uses a host variable must be within the
scope of the statement that declares the variable.

Embedding SQL statements
You can code SQL statements in the COBOL program sections shown in

Table 15. Allowable SQL statements for COBOL program sections

SQL statement Program section
BEGIN DECLARE SECTION WORKING-STORAGE SECTION or LINKAGE
END DECLARE SECTION SECTION
INCLUDE SQLCA WORKING-STORAGE SECTION or LINKAGE
SECTION
INCLUDE text-file-name PROCEDURE DIVISION or DATA DIVISION'

178 Application Programming and SQL Guide

coBOL

Table 15. Allowable SQL statements for COBOL program sections (continued)

SQL statement Program section
DECLARE TABLE DATA DIVISION or PROCEDURE DIVISION
DECLARE CURSOR
Other PROCEDURE DIVISION
Notes:

1. When including host variable declarations, the INCLUDE statement must be in the
WORKING-STORAGE SECTION or the LINKAGE SECTION.

You cannot put SQL statements in the DECLARATIVES section of a COBOL
program.

Each SQL statement in a COBOL program must begin with EXEC SQL and end
with END-EXEC. If the SQL statement appears between two COBOL statements,
the period is optional and might not be appropriate. If the statement appears in an
IE..THEN set of COBOL statements, omit the ending period to avoid inadvertently
ending the IF statement. The EXEC and SQL keywords must appear on one line,
but the remainder of the statement can appear on subsequent lines.

You might code an UPDATE statement in a COBOL program as follows:

EXEC SQL
UPDATE DSN8810.DEPT
SET MGRNO = :MGR-NUM
WHERE DEPTNO = :INT-DEPT
END-EXEC.

Comments: You can include COBOL comment lines (* in column 7) in SQL
statements wherever you can use a blank, except between the keywords EXEC and
SQL. The precompiler also treats COBOL debugging and page-eject lines (D or / in
column 7) as comment lines. For an SQL INCLUDE statement, DB2 treats any text
that follows the period after END-EXEC, and on the same line as END-EXEC, as a
comment.

In addition, you can include SQL comments in any embedded SQL statement.

Continuation for SQL statements: The rules for continuing a character string
constant from one line to the next in an SQL statement embedded in a COBOL
program are the same as those for continuing a non-numeric literal in COBOL.
However, you can use either a quote or an apostrophe as the first nonblank
character in area B of the continuation line. The same rule applies for the
continuation of delimited identifiers and does not depend on the string delimiter
option.

To conform with SQL standard, delimit a character string constant with an
apostrophe, and use a quote as the first nonblank character in area B of the
continuation line for a character string constant.

COPY: Do not use a COBOL COPY statement within host variable declarations
because the DB2 precompiler will not evaluate the statement.

Declaring tables and views: Your COBOL program should include the statement

DECLARE TABLE to describe each table and view the program accesses. You can
use the DB2 declarations generator (DCLGEN) to generate the DECLARE TABLE

Chapter 9. Embedding SQL statements in host languages 179

COBOL

statements. You should include the DCLGEN members in the DATA DIVISION.
For more information, see [Chapter 8, “Generating declarations for your tableg
fusing DCLGEN,” on page 127.

Dynamic SQL in a COBOL program: In general, COBOL programs can easily
handle dynamic SQL statements. COBOL programs can handle SELECT statements
if the data types and the number of fields returned are fixed. If you want to use
variable-list SELECT statements, use an SQLDA. See |"Defining SQL descriptor|
lareas” on page 178| for more information on SQLDA.

Including code: To include SQL statements or COBOL host variable declarations
from a member of a partitioned data set, use the following SQL statement in the
source code where you want to include the statements:

EXEC SQL INCLUDE member-name END-EXEC.

If you are using the DB2 precompiler, you cannot nest SQL INCLUDE statements.
In this case, do not use COBOL verbs to include SQL statements or host variable
declarations, and do not use the SQL INCLUDE statement to include CICS
preprocessor related code. In general, if you are using the DB2 precompiler, use the
SQL INCLUDE statement only for SQL-related coding. If you are using the COBOL
SQL coprocessor, none of these restrictions apply.

Margins: You must code EXEC SQL in columns 12 through 72, otherwise the DB2
precompiler does not recognize the SQL statement. Continued lines of a SQL
statement can be in columns 8 through 72.

Names: You can use any valid COBOL name for a host variable. Do not use
external entry names or access plan names that begin with 'DSN’, and do not use
host variable names that begin with 'SQL’. These names are reserved for DB2.

Sequence numbers: The source statements that the DB2 precompiler generates do
not include sequence numbers.

Statement labels: You can precede executable SQL statements in the PROCEDURE
DIVISION with a paragraph name, if you wish.

WHENEVER statement: The target for the GOTO clause in an SQL statement
WHENEVER must be a section name or unqualified paragraph name in the
PROCEDURE DIVISION.

Special COBOL considerations: The following considerations apply to programs
written in COBOL:

* In a COBOL program that uses elements in a multi-level structure as host
variable names, the DB2 precompiler generates the lowest two-level names.

* Using the COBOL compiler options DYNAM and NODYNAM depends on the
operating environment.

180 Application Programming and SQL Guide

coBOL

— TSO and IMS

You can specify the option DYNAM when compiling a COBOL program if

you use the following guidelines. IMS and DB2 share a common alias

name, DSNHLI, for the language interface module. You must do the

following when you concatenate your libraries:

— If you use IMS with the COBOL option DYNAM, be sure to concatenate
the IMS library first.

— If you run your application program only under DB2, be sure to
concatenate the DB2 library first.

— CICS and CAF
You must specify the option NODYNAM when you compile a COBOL
program that includes SQL statements. You cannot use DYNAM.

Because stored procedures use CAF, you must also compile COBOL stored
procedures with the option NODYNAM.

To avoid truncating numeric values, use either of the following methods:
— Use the COMP-5 data type for binary integer host variables.
— Specify the COBOL compiler option:

- TRUNC(OPT) if you are certain that the data being moved to each binary
variable by the application does not have a larger precision than is defined
in the PICTURE clause of the binary variable.

- TRUNC(BIN) if the precision of data being moved to each binary variable
might exceed the value in the PICTURE clause.

DB2 assigns values to binary integer host variables as if you had specified the
COBOL compiler option TRUNC(BIN) or used the COMP-5 data type.

If a COBOL program contains several entry points or is called several times, the
USING clause of the entry statement that executes before the first SQL statement
executes must contain the SQLCA and all linkage section entries that any SQL
statement uses as host variables.

If you use the DB2 precompiler, the REPLACE statement has no effect on SQL
statements. It affects only the COBOL statements that the precompiler generates.
If you use the SQL statement coprocessor, the REPLACE statement replaces text
strings in SQL statements as well as in generated COBOL statements.

If you use the DB2 precompiler, no compiler directives should appear between
the PROCEDURE DIVISION and the DECLARATIVES statement.

Do not use COBOL figurative constants (such as ZERO and SPACE), symbolic
characters, reference modification, and subscripts within SQL statements.
Observe the rules in Chapter 2 of [DB2 SQL Reference| when you name SQL
identifiers. However, for COBOL only, the names of SQL identifiers can follow
the rules for naming COBOL words, if the names do not exceed the allowable
length for the DB2 object. For example, the name 1ST-TIME is a valid cursor
name because it is a valid COBOL word, but the name 1ST_TIME is not valid
because it is not a valid SQL identifier or a valid COBOL word.

Observe these rules for hyphens:

— Surround hyphens used as subtraction operators with spaces. DB2 usually
interprets a hyphen with no spaces around it as part of a host variable name.

Chapter 9. Embedding SQL statements in host languages 181

COBOL

— You can use hyphens in SQL identifiers under either of the following
circumstances:

- The application program is a local application that runs on DB2 UDB for
OS/390 Version 6 or later.

- The application program accesses remote sites, and the local site and
remote sites are DB2 UDB for OS/390 Version 6 or later.

* If you include an SQL statement in a COBOL PERFORM ... THRU paragraph and
also specify the SQL statement WHENEVER ... GO, the COBOL compiler returns
the warning message IGYOP3094. That message might indicate a problem. This
usage is not recommended.

* If you are using the DB2 precompiler and COBOL, the following additional
restrictions apply:

— All SQL statements and any host variables they reference must be within the
first program when using nested programs or batch compilation.

— DB2 COBOL programs must have a DATA DIVISION and a PROCEDURE
DIVISION. Both divisions and the WORKING-STORAGE section must be
present in programs that contain SQL statements.

If you pass host variables with address changes into a program more than once,
the called program must reset SQL-INIT-FLAG. Resetting this flag indicates that
the storage must initialize when the next SQL statement executes. To reset the flag,
insert the statement MOVE ZERO TO SQL-INIT-FLAG in the called program’s
PROCEDURE DIVISION, ahead of any executable SQL statements that use the host
variables.

If you use the COBOL SQL statement coprocessor, the called program does not
need to reset SQL-INIT-FLAG.

Using host variables and host variable arrays

You must explicitly declare all host variables and host variable arrays used in SQL
statements in the WORKING-STORAGE SECTION or LINKAGE SECTION of your
program’s DATA DIVISION. You must explicitly declare each host variable and
host variable array before using them in an SQL statement.

You can precede COBOL statements that define the host variables and host
variable arrays with the statement BEGIN DECLARE SECTION, and follow the
statements with the statement END DECLARE SECTION. You must use the
statements BEGIN DECLARE SECTION and END DECLARE SECTION when you
use the precompiler option STDSQL(YES).

A colon (:) must precede all host variables and all host variable arrays in an SQL
statement.

The names of host variables and host variable arrays should be unique within the
source data set or member, even if the variables and variable arrays are in different
blocks, classes, or procedures. You can qualify the names with a structure name to
make them unique.

An SQL statement that uses a host variable or host variable array must be within
the scope of the statement that declares that variable or array. You define host
variable arrays for use with multiple-row FETCH and INSERT statements.

182 Application Programming and SQL Guide

coBOL

You can specify OCCURS when defining an indicator structure, a host variable
array, or an indicator variable array. You cannot specify OCCURS for any other
type of host variable.

Declaring host variables

Only some of the valid COBOL declarations are valid host variable declarations. If
the declaration for a variable is not valid, then any SQL statement that references
the variable might result in the message UNDECLARED HOST VARIABLE.

Numeric host variables: The three valid forms of numeric host variables are:
¢ Floating-point numbers

* Integers and small integers
* Decimal numbers

shows the syntax for declarations of floating-point or real host variables.

»—EGI —variable-name COMPUTATIONAL-1 >
77 L IS COMP-1———
level-1- USAGE—I_——I— ECOMPUTATIONAL—Z—

COMP-2

Is J
LVALUE numeric-constant

Figure 64. Floating-point host variables

Notes:

1. level-1 indicates a COBOL level between 2 and 48.
2. COMPUTATIONAL-1 and COMP-1 are equivalent.
3. COMPUTATIONAL-2 and COMP-2 are equivalent.

shows the syntax for declarations of integer and small integer host
variables.

$9(9)
5999999999

]
> 01 —var‘iable—name—[PICTURE S9(4) >
E77 PIC4 $9999 L IS
level-1- USAGE

BINARY
COMPUTATIONAL-4— L IS J
COMP-4— VALUE numeric-constant
COMPUTATIONAL-5—
COMP-5
COMPUTATIONAL—
COMP

A\
A

Figure 65. Integer and small integer host variables

Chapter 9. Embedding SQL statements in host languages 183

COBOL

Notes:
1. level-1 indicates a COBOL level between 2 and 48.

2. The COBOL binary integer data types BINARY, COMPUTATIONAL, COMP,
COMPUTATIONAL-4, and COMP-4 are equivalent.

3. COMPUTATIONAL-5 (and COMP-5) are equivalent to the other COBOL binary
integer data types if you compile the other data types with TRUNC(BIN).

4. Any specification for scale is ignored.

shows the syntax for declarations of decimal host variables.

IS
»—01 —variable-name PIC%—u—picture—string >
—77 PIC L [IS]
—level-1-—- USAGE
»———PACKED-DECIMAL >
—COMPUTATIONAL-3—
—COMP-3

CHARACTER—l

IS
DISPLAY_l SIGN |_ —l LEADING SEPARATE |_
NATIONAL

». >«

Is J
LVALUE numeric-constant

Figure 66. Decimal host variables

Notes:
1. level-1 indicates a COBOL level between 2 and 48.
2. PACKED-DECIMAL, COMPUTATIONAL-3, and COMP-3 are equivalent. The

picture-string that is that is associated with these types must have the form
S9(i))VI(d) (or S9...9V9...9, with i and d instances of 9) or S9(i)V.

3. The picture-string that is associated with SIGN LEADING SEPARATE must have
the form S9(i)V9(d) (or S9...9V9...9, with i and d instances of 9 or 59...9V with i
instances of 9).

Character host variables: The three valid forms of character host variables are:
* Fixed-length strings

* Varying-length strings

* CLOBs

The following figures show the syntax for forms other than CLOBs. See
for the syntax of CLOBs.

[Figure 67 on page 185 shows the syntax for declarations of fixed-length character
host variables.

184 Application Programming and SQL Guide

coBOL

01
E77
level-1-

| 2

IS
—variable-name PICTURE picture-string
PIC

v

IS
LUSAGE_I___I_

DISPLAY—| L IS J
VALUE—I_——I—character-constant

Figure 67. Fixed-length character strings

Notes:

1. level-1 indicates a COBOL level between 2 and 48.

2. The picture-string that is associated with these forms must be X(m) (or XX...X,
with m instances of X), with 1 <= m <= 32767 for fixed-length strings. However,

the maximum length of the CHAR data type (fixed-length character string) in
DB2 is 255 bytes.

[Figure 68 on page 186| shows the syntax for declarations of varying-length
character host variables.

Chapter 9. Embedding SQL statements in host languages 185

COBOL

»
>

01—_|—variable-name— .
level-1

A\
A

IS
BINARY >

[]
»»—49—yqr-] PICTURE S9(4)
Lo L

C $9999

—l IS COMPUTATIONAL-4—

COMPUTATIONAL-5—
COMP-5
COMPUTATIONAL—
comp

».

Is J
LVALUE numeric-constant

\4
A

IS
»»—49—var-2 PICTURE picture-string | _| >
PIC DISPLAY

L IS
USAGE

IS J
LVALUE—l_——l—character-constant

Figure 68. Varying-length character strings

Notes:

1. level-1 indicates a COBOL level between 2 and 48.

2. DB2 uses the full length of the S9(4) BINARY variable even though COBOL
with TRUNC(STD) only recognizes values up to 9999. This can cause data
truncation errors when COBOL statements execute and might effectively limit
the maximum length of variable-length character strings to 9999. Consider
using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid data
truncation.

3. For fixed-length strings, the picture-string must be X(m) (or XX...X, with m
instances of X), with 1 <= m <= 32767; for other strings, m cannot be greater
than the maximum size of a varying-length character string.

4. You cannot directly reference var-1 and var-2 as host variables.

5. You cannot use an intervening REDEFINE at level 49.

Graphic character host variables: The three valid forms for graphic character host
variables are:

* Fixed-length strings

* Varying-length strings

* DBCLOBs

The following figures show the syntax for forms other than DBCLOBs. See

[Figure 73 on page 189 for the syntax of DBCLOBs.

186 Application Programming and SQL Guide

coBOL

shows the syntax for declarations of fixed-length graphic host variables.

IS
> 01 —variable-name PICTURE picture-string >
E77 PIC
level-1-

| 2

DISPLAY-1
|—NATIONALJ L IS J
VALUE graphic-constant

IS
LUSAGE_I___I_

Figure 69. Fixed-length graphic strings

Notes:

1. level-1 indicates a COBOL level between 2 and 48.

2. For fixed-length strings, the picture-string is G(m) or N(m) (or, m instances of
GG...G or NN...N), with 1 <= m <= 127; for other strings, m cannot be greater
than the maximum size of a varying-length graphic string.

3. Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for
USAGE NATIONAL, you must use N in place of G. USAGE NATIONAL is
supported only through the SQL statement coprocessor.

[Figure 70 on page 188 shows the syntax for declarations of varying-length graphic
host variables.

Chapter 9. Embedding SQL statements in host languages 187

COBOL

01—_|—variable-name— .
level-1

A\
A

IS
BINARY >

[]
»»—49—yqr-] PICTURE S9(4)
Lo L

C $9999

—l IS COMPUTATIONAL-4—

COMPUTATIONAL-5—

».

COMP-5

COMPUTATIONAL—

COMP.

e |
VALUE numeric-constant
IS
»»—49—var-2 PICTURE picture-string |_DISPLAY-l >
PIC L NATIONAL

IS
USAGE—r——I—

Is J
LVALUE graphic-constant

A\
A

Figure 70. Varying-length graphic strings

Notes:

1.
2.

5.

level-1 indicates a COBOL level between 2 and 48.

DB2 uses the full length of the S9(4) BINARY variable even though COBOL
with TRUNC(STD) only recognizes values up to 9999. This can cause data
truncation errors when COBOL statements execute and might effectively limit
the maximum length of variable-length character strings to 9999. Consider
using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid data
truncation.

For fixed-length strings, the picture-string is G(m) or N(m) (or, m instances of
GG...G or NN...N), with 1 <= m <= 127; for other strings, m cannot be greater
than the maximum size of a varying-length graphic string.

Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for
USAGE NATIONAL, you must use N in place of G. USAGE NATIONAL is
supported only through the SQL statement coprocessor.

You cannot directly reference var-1 and var-2 as host variables.

Result set locators:|Figure 71 on page 189|shows the syntax for declarations of
result set locators. See [Chapter 25, “Using stored procedures for client/server|

forocessing,” on page 573|for a discussion of how to use these host variables.

188 Application Programming and SQL Guide

coBOL

A\
A

»»—01—variable-name SQL TYPE IS—RESULT-SET-LOCATOR—VARYING—.

IS
LUSAGE_I___I_

Figure 71. Result set locators

Table Locators: |ﬁigure 72| shows the syntax for declarations of table locators. See
“ Accessing transition tables in a user-defined function or stored procedure” onl
page 33§| for a discussion of how to use these host variables.

SQL TYPE IS—TABLE LIKE—table-name—AS LOCATOR—.——— >«

> Ol—l—variable-name
|:leve l-1-

IS
LUSAGE_I___I_

Figure 72. Table locators

Note: level-1 indicates a COBOL level between 2 and 48.

LOB Variables and Locators: shows the syntax for declarations of BLOB,
CLOB, and DBCLOB host variables and locators. See [Chapter 14, “Programming|
ffor large objects,” on page 289 for a discussion of how to use these host variables.

v

01—_|—variable—name SQL TYPE IS
level-1 L IS
USAGE—I_——I—

BINARY LARGE OBJECT —(—length p— <
BLOB - K—
—ECHARACTER LARGE OBJECT—— M

Y

CHAR LARGE OBJECT G
CLOB
—DBCLOB
BLOB-LOCATOR
—CLOB-LOCATOR—
—DBCLOB-LOCATOR—

Figure 73. LOB variables and locators

Note: level-1 indicates a COBOL level between 2 and 48.

ROWID:s: [Figure 74 shows the syntax for declarations of ROWID host variables.
See [Chapter 14, “Programming for large objects,” on page 289| for a discussion of
how to use these host variables.

01—_|—variab le-name SQL TYPE IS—ROWID—. <
level-1 L

IS
usage—L— |

Figure 74. ROWID variables

Note: level-1 indicates a COBOL level between 2 and 48.

Chapter 9. Embedding SQL statements in host languages 189

COBOL

Declaring host variable arrays

Only some of the valid COBOL declarations are valid host variable array
declarations. If the declaration for a variable array is not valid, any SQL statement
that references the variable array might result in the message UNDECLARED
HOST VARIABLE ARRAY.

Numeric host variable arrays: The three valid forms of numeric host variable
arrays are:

* Floating-point numbers

* Integers and small integers

¢ Decimal numbers

shows the syntax for declarations of floating-point host variable arrays.

»
>

»»>—level-1—variable-name

L COMPUTATIONAL-1——0CCURS—dimension |_ _| >
IS COMP-1 TIMES
USAGE—r——I— ECOMPUTATIONAL-Z—
COMP-2

Is J
LVALUE numeric-constant

A\
A

Figure 75. Floating-point

host variable arrays

Notes:

1. level-1 indicates a COBOL level between 2 and 48.

2. COMPUTATIONAL-1 and COMP-1 are equivalent.

3. COMPUTATIONAL-2 and COMP-2 are equivalent.

4. dimension must be an integer constant between 1 and 32767.

shows the syntax for declarations of integer and small integer host
variable arrays.

IS
»—ZeveZ-1—variable-name—|:PICTURE |_ —l S9(4) >
PIC4 ES9999 L [IS]

S9(9) USAGE

$999999999—-
BINARY —OCCURS—dimension |_ _| —><
COMPUTATIONAL-4— TIMES L IS J
COMP-4 VALUE numeric-constant
COMPUTATIONAL-5—
COMP-5
COMPUTATIONAL—
COMP-

Figure 76. Integer and small integer host variable arrays

Notes:

190 Application Programming and SQL Guide

coBOL

1. level-1 indicates a COBOL level between 2 and 48.

2. The COBOL binary integer data types BINARY, COMPUTATIONAL, COMP,
COMPUTATIONAL-4, and COMP-4 are equivalent.

3. COMPUTATIONAL-5 (and COMP-5) are equivalent to the other COBOL binary
integer data types if you compile the other data types with TRUNC(BIN).

4. Any specification for scale is ignored.
5. dimension must be an integer constant between 1 and 32767.

shows the syntax for declarations of decimal host variable arrays.

IS
»»—level-1—variable-name PICTURE picture-string >
PIC L

IS
usage—L— 1

> PACKED-DECIMAL >
COMPUTATIONAL-3—
COMP-3

CHARACTER—l

IS
DISPLAY_l SIGN |_ —l LEADING SEPARATE |_
NATIONAL

»—0CCURS—dimension |_ _| . >
TIMES L IS J
VALUE numeric-constant

Figure 77. Decimal host variable arrays

Notes:
1. level-1 indicates a COBOL level between 2 and 48.

2. PACKED-DECIMAL, COMPUTATIONAL-3, and COMP-3 are equivalent. The
picture-string that is associated with these types must have the form S9(i)V9(d)
(or $9..9V9...9, with i and d instances of 9) or S9(i)V.

3. The picture-string that is associated with SIGN LEADING SEPARATE must have
the form S9(i)V9(d) (or S9...9V9...9, with i and d instances of 9 or 59...9V with i
instances of 9).

4. dimension must be an integer constant between 1 and 32767.

Character host variable arrays: The three valid forms of character host variable
arrays are:

* Fixed-length character strings

¢ Varying-length character strings

* CLOBs

The following figures show the syntax for forms other than CLOBs. See
for the syntax of CLOBs.

[Figure 78 on page 192| shows the syntax for declarations of fixed-length character
string arrays.

Chapter 9. Embedding SQL statements in host languages 191

COBOL

IS
»»>—level-1—variable-name PIC%—u—picture—string >
PIC | DISPLAY—|
L Is
USAGE

»—0CCURS—dimension . »<
|—TIMES—| L IS J
VALUE character-constant

Figure 78. Fixed-length character string arrays

Notes:
1. level-1 indicates a COBOL level between 2 and 48.

2. The picture-string that is associated with these forms must be X(m) (or XX...X,
with m instances of X), with 1 <= m <= 32767 for fixed-length strings. However,
the maximum length of the CHAR data type (fixed-length character string) in
DB2 is 255 bytes.

3. dimension must be an integer constant between 1 and 32767.

[Figure 79 on page 193] shows the syntax for declarations of varying-length
character string arrays.

192 Application Programming and SQL Guide

coBOL

»»—Ilevel-1—variable-name—O0CCURS—dimension |_ _|
TIMES

IS
BINARY

A\
A

»»>—A49—var-1 PICTURE S9(4)
|—PIC4 |—59999

—| IS COMPUTATIONAL-4—
\\USAGE—r——I— COMP-4—————

COMPUTATIONAL-5—

COMP-5
COMPUTATIONAL—
COMP.

SYNCHRONIZED >

SINC———| L Is J

VALUE numeric-constant
]
»>—49—var-2 PICTURE picture-string | _| >
DISPLAY

PIC
L IS
USAGE

| 2

IS J
LVALUE—I_——I—character-constant

Figure 79. Varying-length character string arrays

Notes:
1. level-1 indicates a COBOL level between 2 and 48.

2. DB2 uses the full length of the S9(4) BINARY variable even though COBOL
with TRUNC(STD) recognizes only values up to 9999. This can cause data
truncation errors when COBOL statements execute and might effectively limit
the maximum length of variable-length character strings to 9999. Consider
using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid data

truncation.

3. The picture-string that is associated with these forms must be X(m) (or XX...X,
with m instances of X), with 1 <= m <= 32767 for fixed-length strings; for other
strings, m cannot be greater than the maximum size of a varying-length

character string.

4. You cannot directly reference var-1 and var-2 as host variable arrays.

5. You cannot use an intervening REDEFINE at level 49.

6. dimension must be an integer constant between 1 and 32767.

Example: The following example shows declarations of a fixed-length character

array and a varying-length character array:

01 OUTPUT-VARS.
05 NAME OCCURS 10 TIMES.
49 NAME-LEN PIC S9(4) COMP-4 SYNC.
49 NAME-DATA PIC X(40).
05 SERIAL-NUMBER PIC S9(9) COMP-4 OCCURS 10 TIMES.

Chapter 9. Embedding SQL statements in host languages 193

COBOL

Graphic character host variable arrays: The three valid forms for graphic character
host variable arrays are:

* Fixed-length strings

* Varying-length strings

» DBCLOBs

The following figures show the syntax for forms other than DBCLOBs. See
[Figure 82 on page 196 for the syntax of DBCLOBs.

shows the syntax for declarations of fixed-length graphic string arrays.

IS IS
»»—Ilevel-1—variable-name PICTURE pictur‘e—str‘ing—USAGEAF—\I—[DISPLAY—l_—,—v
PIC NATIONAL

»—0CCURS—dimension
|—TIMES—| L

IS J
VALUE—I_——I—graphic-constant

Figure 80. Fixed-length graphic string arrays

Notes:
1. level-1 indicates a COBOL level between 2 and 48.
2. For fixed-length strings, the picture-string is G(m) or N(m) (or, m instances of

GG...G or NN...N), with 1 <= m <= 127; for other strings, m cannot be greater
than the maximum size of a varying-length graphic string.

3. Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for
USAGE NATIONAL, you must use N in place of G. USAGE NATIONAL is
supported only through the SQL statement coprocessor.

4. dimension must be an integer constant between 1 and 32767.

[Figure 81 on page 195 shows the syntax for declarations of varying-length graphic
string arrays.

194 Application Programming and SQL Guide

coBOL

»»>—Ilevel-1——variable-name—O0CCURS—dimension |_ _|
TIMES

»»—A49—vyqr-]1

SYNCHRONIZED:
SYNCg L IS
VALUE

»»—A49—vyar-2

IS
PICTURE |_ —l S9(4)

A\
A

BINARY >

|—IPIC4 |—59999

—l IS COMPUTATIONAL-4—

COMPUTATIONAL-5—
COMP-5
COMPUTATIONAL—
comp

A\
A

numeric-constan tJ

v

|—IS—| IS
TURE picture-string—USAGEAF—\I—[DISPLAY-l
J NATIONAL

Is J
LVALUE graphic-constant

A\
A

Figure 81. Varying-length graphic string arrays

Notes:
1. level-1 indicates a COBOL level between 2 and 48.

2. DB2 uses the full length of the S9(4) BINARY variable even though COBOL
with TRUNC(STD) recognizes only values up to 9999. This can cause data
truncation errors when COBOL statements execute and might effectively limit
the maximum length of variable-length character strings to 9999. Consider
using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid data
truncation.

3. For fixed-length strings, the picture-string is G(m) or N(m) (or, m instances of
GG...G or NN...N), with 1 <= m <= 127; for other strings, m cannot be greater
than the maximum size of a varying-length graphic string.

4. Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for
USAGE NATIONAL, you must use N in place of G. USAGE NATIONAL is
supported only through the SQL statement coprocessor.

5. You cannot directly reference var-1 and var-2 as host variable arrays.
6. dimension must be an integer constant between 1 and 32767.

LOB variable arrays and locators: [Figure 82 on page 196 shows the syntax for
declarations of BLOB, CLOB, and DBCLOB host variable arrays and locators. See
[Chapter 14, “Programming for large objects,” on page 289| for a discussion of how
to use LOB variables.

Chapter 9. Embedding SQL statements in host languages 195

COBOL

»»>—Ilevel-1—variable-name L SQL TYPE IS >
IS
usacE—L— 1|

BINARY LARGE OBJECT—I——(—Zength) OCCURS—dimension—L——l—.—>4
BLOB —K— TIMES
CHARACTER LARGE OBJECT—— M

—ECHAR LARGE OBJECT G
CLOB

—DBCLOB

—BLOB LOCATOR

—CLOB LOCATOR—
—DBCLOB LOCATOR—

Figure 82. LOB variable arrays and locators

Notes:
1. level-1 indicates a COBOL level between 2 and 48.
2. dimension must be an integer constant between 1 and 32767.

ROWIDs: [Figure 83| shows the syntax for declarations of ROWID variable arrays.
See [Chapter 14, “Programming for large objects,” on page 289| for a discussion of
how to use these host variables.

»»—level-1—variable-name

SQL TYPE IS—ROWID—OCCURS—dimension . >

I—TIMES—|

IS
LUSAGE_I__—I_

Figure 83. ROWID variable arrays

Notes:
1. level-1 indicates a COBOL level between 2 and 48.

2. dimension must be an integer constant between 1 and 32767.

Using host structures

A COBOL host structure is a named set of host variables defined in your
program’s WORKING-STORAGE SECTION or LINKAGE SECTION. COBOL host
structures have a maximum of two levels, even though the host structure might
occur within a structure with multiple levels. However, you can declare a
varying-length character string, which must be level 49.

A host structure name can be a group name whose subordinate levels name
elementary data items. In the following example, B is the name of a host structure
consisting of the elementary items C1 and C2.
01 A

02 B

03 C1 PICTURE ...
03 C2 PICTURE ...

When you write an SQL statement using a qualified host variable name (perhaps
to identify a field within a structure), use the name of the structure followed by a
period and the name of the field. For example, specify B.C1 rather than C1 OF B or
C1IN B.

196 Application Programming and SQL Guide

coBOL

The precompiler does not recognize host variables or host structures on any
subordinate levels after one of these items:

* A COBOL item that must begin in area A

* Any SQL statement (except SQL INCLUDE)

* Any SQL statement within an included member

When the precompiler encounters one of the preceding items in a host structure, it
considers the structure to be complete.

shows the syntax for declarations of host structures.

»»—level-1—variable-name—. >
»Y level-2—var-1——numeric-usage—. ><
7
PICTURE integer-decimal-usage—.
—EPIC—I I—pictur‘e—string—|

—char-inner-variable—.
—varchar-inner-variables
—vargraphic-inner-variables

SQL TYPE IS—ROWID—.
I

SQL TYPE IS—TABLE LIKE—table-name—AS LOCATOR—.—

IS
—USAGE—I_——I—

LOB data type—.

IS
—USAGE—I_——I—

Figure 84. Host structures in COBOL

shows the syntax for numeric-usage items that are used within
declarations of host structures.

> L COMPUTATIONAL-1 ><
IS COMP-1—— L IS J
USAGE—r——I— COMPUTATIONAL-2— VALUE—I_——I—constant
COMP-2

Figure 85. Numeric-usage

[Figure 86 on page 198 shows the syntax for integer and decimal usage items that
are used within declarations of host structures.

Chapter 9. Embedding SQL statements in host languages 197

COBOL

>> BINARY >
L IS —COMPUTATIONAL-4—

USAGE —COMP-4

—COMPUTATIONAL-5—
—COMP-5
—COMPUTATIONAL—
—COMP
PACKED-DECIMAL
—COMPUTATIONAL-3—
—COMP-3

7
—|:DISPLAY_| SIGN LEADING SEPARATE

NATIONAL |—CHARACTER—|

Is J
LVALU E—I_——I—cons tant

Figure 86. Integer-decimal-usage

shows the syntax for CHAR inner variables that are used within
declarations of host structures.

IS
PIC%—u—picture-string | _| >
PIC DISPLAY
L Is
USAGE

». »<

IS J
LVALU E—I_——I—cons tant

Figure 87. CHAR-inner-variable

[Figure 88 on page 199 shows the syntax for VARCHAR inner variables that are
used within declarations of host structures.

198 Application Programming and SQL Guide

coBOL

IS
»»>—A49—vyqr-2 PICTURE
PIC

v

I_S9 (4) BINARY

S9999—| L IS COMPUTATIONAL-4—
USAGE—r——I— COMP-4——

COMPUTATIONAL-5—

COMP-5
COMPUTATIONAL—
COMP
oL]
VALUE numeric-constant
]
»»—A49—var-3 |_PICTURE picture-string | _| >
PIC4 DISPLAY
L Is
USAGE

»
>

A\
A

Is J
LVALU E—l_——l—character‘—cons tant

Figure 88. VARCHAR-inner-variables

[Figure 89 on page 200 shows the syntax for VARGRAPHIC inner variables that are
used within declarations of host structures.

Chapter 9. Embedding SQL statements in host languages 199

COBOL

IS
>>—49—var‘—4—|:PICTURE I_S9(4) BINARY

i L |
PIC 59999 IS COMPUTATIONAL-4
USAGE—I_——I— COMP-4——
COMPUTATIONAL-5—
COMP-5
COMPUTATIONAL—
COMP

v

». >

IS J
LVALUE numeric-constant

IS
»»—A49—var-5 PICTURE picture-string |_DISPLAY—IJ >
PIC L NATIONAL

IS
usage—L— 1

». >«

Is J
LVALUE graphic-constant

Figure 89. VARGRAPHIC-inner-variables

Notes:

1. For fixed-length strings, the picture-string is G(m) or N(m) (or, m instances of
GG...G or NN...N), with 1 <= m <= 127; for other strings, m cannot be greater
than the maximum size of a varying-length graphic string.

2. Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for
USAGE NATIONAL, you must use N in place of G. USAGE NATIONAL is
supported only through the SQL statement coprocessor.

shows the syntax for LOB variables and locators that are used within
declarations of host structures.

\4
A

»»—SQL TYPE IS BINARY LARGE OBJECT—I——(—Zength)
BLOB —
—ECHARACTER LARGE OBJECT——

=~
|

<

CHAR LARGE OBJECT
CLOB
—DBCLOB
—BLOB-LOCATOR
—CLOB-LOCATOR
—DBCLOB-LOCATOR—

[<p}

Figure 90. LOB variables and locators

Notes:
1. level-1 indicates a COBOL level between 1 and 47.
2. level-2 indicates a COBOL level between 2 and 48.

200 Application Programming and SQL Guide

coBOL

3. For elements within a structure, use any level 02 through 48 (rather than 01 or
77), up to a maximum of two levels.

4. Using a FILLER or optional FILLER item within a host structure declaration
can invalidate the whole structure.

Determining equivalent SQL and COBOL data types

describes the SQL data type, and base SQLTYPE and SQLLEN values, that
the precompiler uses for the host variables it finds in SQL statements. If a host
variable appears with an indicator variable, the SQLTYPE is the base SQLTYPE

plus 1.

Table 16. SQL data types the precompiler uses for COBOL declarations

COBOL data type

SQLTYPE of host
variable

SQLLEN of host variable

SQL data type

COMP-1 480 4 REAL or FLOAT(n) 1<=n<=21

COMP-2 480 8 DOUBLE PRECISION, or
FLOAT(n) 22<=n<=53

S9(i)V9(d) COMP-3 or S9(i)VI(d) 484 i+d in byte 1, d in byte 2~ DECIMAL(i+d,d) or

PACKED-DECIMAL NUMERIC(i+d,d)

S9(1))V9(d) DISPLAY SIGN 504 i+d in byte 1, d in byte 2 No exact equivalent. Use

LEADING SEPARATE DECIMAL(i+d,d) or
NUMERIC(i+d,d)

S9(1))V9(d) NATIONAL SIGN 504 i+d in byte 1, d in byte 2 No exact equivalent. Use

LEADING SEPARATE DECIMAL(i+d,d) or
NUMERIC(i+d,d)

59(4) COMP-4, S9(4) COMP-5, 500 2 SMALLINT

59(4) COMP, or S9(4) BINARY

59(9) COMP-4, S9(9) COMP-5, 496 4 INTEGER

59(9) COMP, or S9(9) BINARY

Fixed-length character data 452 n CHAR(n)

Varying-length character data 448 n VARCHAR(n)

1<=n<=255

Varying-length character data 456 m VARCHAR(m)

m>255

Fixed-length graphic data 468 m GRAPHIC(m)

Varying-length graphic data 464 m VARGRAPHIC(m)

1<=m<=127

Varying-length graphic data 472 m VARGRAPHIC(m)

m>127

SQL TYPE IS 972 4 Result set locator?

RESULT-SET-LOCATOR

SQL TYPE IS TABLE LIKE 976 4 Table locator!

table-name AS LOCATOR

SQL TYPE IS BLOB-LOCATOR 960 BLOB locator*

SQL TYPE IS CLOB-LOCATOR 964 CLOB locator'

USAGE IS SQL TYPE IS 968 DBCLOB locator*

DBCLOB-LOCATOR

USAGE IS SQL TYPE IS 404 n BLOB(n)

BLOB(17) 1=n=2147483647

Chapter 9. Embedding SQL statements in host languages

201

COBOL

Table 16. SQL data types the precompiler uses for COBOL declarations (continued)

COBOL data type

SQLTYPE of host
variable

SQLLEN of host variable SQL data type

USAGE IS SQL TYPE IS
CLOB(n) 1=n=2147483647

408

CLOB(n)

USAGE IS SQL TYPE IS

DBCLOB(m) 1=m=1073741823>

412

DBCLOB(m)?

SQL TYPE IS ROWID

904

ROWID

Notes:

1. Do not use this data type as a column type.

2. m is the number of double-byte characters.

helps you define host variables that receive output from the database. You
can use the table to determine the COBOL data type that is equivalent to a given
SQL data type. For example, if you retrieve TIMESTAMP data, you can use the
table to define a suitable host variable in the program that receives the data value.

shows direct conversions between DB2 data types and host data types.
However, a number of DB2 data types are compatible. When you do assignments
or comparisons of data that have compatible data types, DB2 does conversions
between those compatible data types. See [Table 1 on page 5 for information on
compatible data types.

Table 17. SQL data types mapped to typical COBOL declarations

SQL data type

COBOL data type

Notes

SMALLINT S9(4) COMP-4,
S9(4) COMP-5,
S9(4) COMP,
or S9(4) BINARY
INTEGER S9(9) COMP-4,

S9(9) COMP-5,
S9(9) ComP,
or S9(9) BINARY

DECIMAL(p,s) or
NUMERIC(p,s)

S9(p-s)V9(s) COMP-3 or
S9(p-s)VI(s)
PACKED-DECIMAL
DISPLAY SIGN

LEADING SEPARATE
NATIONAL SIGN

LEADING SEPARATE

p is precision; s is scale. O<=s<=p<=31. If
5=0, use S9(p)V or S9(p). If s=p, use SVI(s).
If the COBOL compiler does not support
31-digit decimal numbers, no exact
equivalent exists. Use COMP-2.

REAL or FLOAT (n) COMP-1 1<=n<=21
DOUBLE PRECISION, COMP-2 22<=n<=53
DOUBLE or FLOAT (n)

CHAR(n) Fixed-length character string. For example, 1<=n<=255

01 VAR-NAME PIC X(n).

VARCHAR(n)

Varying-length character string. For

example,

01 VAR-NAME.
49 VAR-LEN PIC S9(4)
USAGE BINARY.

49 VAR-TEXT PIC X(n).

The inner variables must have a level of
49.

202 Application Programming and SQL Guide

coBOL

Table 17. SQL data types mapped to typical COBOL declarations (continued)

SQL data type

COBOL data type

Notes

GRAPHIC(n) Fixed-length graphic string. For example, n refers to the number of double-byte
01 VAR-NAME PIC G(n) characters, not to the number of bytes.
USAGE IS DISPLAY-1. l<=n<=127
VARGRAPHIC(n) Varying-length graphic string. For n refers to the number of double-byte
example, characters, not to the number of bytes.
o XSR_I/'\-:QP:'EEN PIC S9(4) The inner variables must have a level of
USAGE BINARY. 49.
49 VAR-TEXT PIC G(n)
USAGE IS DISPLAY-1.
DATE Fixed-length character string of length n. If you are using a date exit routine, # is
For example, determined by that routine. Otherwise, n
01 VAR-NAME PIC X(n). must be at least 10.
TIME Fixed-length character string of length n. If you are using a time exit routine, # is
For example, determined by that routine. Otherwise, n
01 VAR-NAME PIC X(n). must be at least 6; to include seconds, n
must be at least 8.
TIMESTAMP Fixed-length character string of length of 1 must be at least 19. To include

length n. For example,
01 VAR-NAME PIC X(n).

microseconds, n must be 26; if 1 is less
than 26, truncation occurs on the
microseconds part.

Result set locator

SQL TYPE IS
RESULT-SET-LOCATOR

Use this data type only for receiving result
sets. Do not use this data type as a
column type.

Table locator

SQL TYPE IS
TABLE LIKE
table-name
AS LOCATOR

Use this data type only in a user-defined
function or stored procedure to receive
rows of a transition table. Do not use this
data type as a column type.

BLOB locator

USAGE IS SQL TYPE IS
BLOB-LOCATOR

Use this data type only to manipulate data
in BLOB columns. Do not use this data
type as a column type.

CLOB locator

USAGE IS SQL TYPE IS
CLOB-LOCATOR

Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.

DBCLOB locator

USAGE IS SQL TYPE IS
DBCLOB-LOCATOR

Use this data type only to manipulate data
in DBCLOB columns. Do not use this data
type as a column type.

BLOB(n) USAGE IS SQL TYPE IS 1=n=2147483647
BLOB(n)

CLOB(n) USAGE IS SQL TYPE IS 1=n=2147483647
CLOB(n)

DBCLOB(n) USAGE IS SQL TYPE IS n is the number of double-byte characters.
DBCLOB(n) 1=n=1073741823

ROWID SQL TYPE IS ROWID

Notes on COBOL variable declaration and usage
You should be aware of the following considerations when you declare COBOL
host variables.

Chapter 9. Embedding SQL statements in host languages 203

COBOL

Controlling the CCSID: IBM Enterprise COBOL for z/OS Version 3 Release 2 or
later, and the SQL statement coprocessor for the COBOL compiler, support:

* The NATIONAL data type that is used for declaring Unicode values in the
UTF-16 format (that is, CCSID 1200)

* The COBOL CODEPAGE compiler option that is used to specify the default
EBCDIC CCSID of character data items

You can use the NATIONAL data type and the CODEPAGE compiler option to
control the CCSID of the character host variables in your application.

For example, if you declare the host variable HV1 as USAGE NATIONAL, then
DB2 handles HV1 as if you had used this DECLARE VARIABLE statement:

DECLARE :HV1 VARIABLE CCSID 1200

In addition, the COBOL SQL statement coprocessor uses the CCSID that is
specified in the CODEPAGE compiler option to indicate that all host variables of
character data type, other than NATIONAL, are specified with that CCSID unless
they are explicitly overridden by a DECLARE VARIABLE statement.

Example: Assume that the COBOL CODEPAGE compiler option is specified as
CODEPAGE(1234). The following code shows how you can control the CCSID:

DATA DIVISION.
01 HV1 PIC N(10) USAGE NATIONAL.
01 HV2 PIC X(20) USAGE DISPLAY.
01 HV3 PIC X(30) USAGE DISPLAY.
EXEC SQL
DECLARE :HV3 VARIABLE CCSID 1047
END-EXEC.

PROCEDURE DIVISION.
EXEC SQL
SELECT C1, C2, C3 INTO :HV1, :HV2, :HV3 FROM T1
END-EXEC.

The CCSID for each of these host variables is:

HV1 1200
HV2 1234
HV3 1047

SQL data types with no COBOL equivalent: If you are using a COBOL compiler
that does not support decimal numbers of more than 18 digits, use one of the
following data types to hold values of greater than 18 digits:

* A decimal variable with a precision less than or equal to 18, if the actual data
values fit. If you retrieve a decimal value into a decimal variable with a scale
that is less than the source column in the database, the fractional part of the
value might be truncated.

* An integer or a floating-point variable, which converts the value. If you choose
integer, you lose the fractional part of the number. If the decimal number might
exceed the maximum value for an integer, or if you want to preserve a fractional
value, you can use floating-point numbers. Floating-point numbers are
approximations of real numbers. Therefore, when you assign a decimal number
to a floating-point variable, the result might be different from the original
number.

204 Application Programming and SQL Guide

coBOL

* A character-string host variable. Use the CHAR function to retrieve a decimal
value into it.

Special purpose COBOL data types: The locator data types are COBOL data
types and SQL data types. You cannot use locators as column types. For
information on how to use these data types, see the following sections:

Result set locator
Chapter 25, “Using stored procedures for client/server processing,”|

on page 573|

Table locator |“Accessing transition tables in a user-defined function or stored|
procedure” on page 335|

LOB locators [Chapter 14, “Programming for large objects,” on page 289

Level 77 data description entries: One or more REDEFINES entries can follow
any level 77 data description entry. However, you cannot use the names in these
entries in SQL statements. Entries with the name FILLER are ignored.

SMALLINT and INTEGER data types: In COBOL, you declare the SMALLINT
and INTEGER data types as a number of decimal digits. DB2 uses the full size of
the integers (in a way that is similar to processing with the TRUNC(BIN) compiler
option) and can place larger values in the host variable than would be allowed in
the specified number of digits in the COBOL declaration. If you compile with
TRUNC(OPT) or TRUNC(STD), ensure that the size of numbers in your application
is within the declared number of digits.

For small integers that can exceed 9999, use S9(4) COMP-5 or compile with
TRUNC(BIN). For large integers that can exceed 999 999 999, use 59(10) COMP-3 to
obtain the decimal data type. If you use COBOL for integers that exceed the
COBOL PICTURE, specify the column as decimal to ensure that the data types
match and perform well.

Overflow: Be careful of overflow. For example, suppose you retrieve an INTEGER
column value into a PICTURE S9(4) host variable and the column value is larger
than 32767 or smaller than -32768. You get an overflow warning or an error,
depending on whether you specify an indicator variable.

VARCHAR and VARGRAPHIC data types: If your varying-length character host
variables receive values whose length is greater than 9999 characters, compile the
applications in which you use those host variables with the option TRUNC(BIN).
TRUNC(BIN) lets the length field for the character string receive a value of up to
32767.

Truncation: Be careful of truncation. For example, if you retrieve an 80-character
CHAR column value into a PICTURE X(70) host variable, the rightmost 10
characters of the retrieved string are truncated. Retrieving a double precision
floating-point or decimal column value into a PIC S9(8) COMP host variable
removes any fractional part of the value.

Similarly, retrieving a column value with DECIMAL data type into a COBOL
decimal variable with a lower precision might truncate the value.

Determining compatibility of SQL and COBOL data types

COBOL host variables that are used in SQL statements must be type compatible
with the columns with which you intend to use them:

Chapter 9. Embedding SQL statements in host languages 205

COBOL

+ Numeric data types are compatible with each other. See [Table 17 on page 202| for

the COBOL data types that are compatible with the SQL data types SMALLINT,
INTEGER, DECIMAL, REAL, and DOUBLE PRECISION.

Character data types are compatible with each other. A CHAR, VARCHAR, or
CLOB column is compatible with a fixed-length or varying-length COBOL
character host variable.

Character data types are partially compatible with CLOB locators. You can
perform the following assignments:

— Assign a value in a CLOB locator to a CHAR or VARCHAR column

— Use a SELECT INTO statement to assign a CHAR or VARCHAR column to a
CLOB locator host variable.

— Assign a CHAR or VARCHAR output parameter from a user-defined function
or stored procedure to a CLOB locator host variable.

— Use a SET assignment statement to assign a CHAR or VARCHAR transition
variable to a CLOB locator host variable.

— Use a VALUES INTO statement to assign a CHAR or VARCHAR function
parameter to a CLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a CHAR or

VARCHAR column to a CLOB locator host variable.

Graphic data types are compatible with each other. A GRAPHIC, VARGRAPHIC,

or DBCLOB column is compatible with a fixed-length or varying-length COBOL

graphic string host variable.

Graphic data types are partially compatible with DBCLOB locators. You can

perform the following assignments:

— Assign a value in a DBCLOB locator to a GRAPHIC or VARGRAPHIC
column

— Use a SELECT INTO statement to assign a GRAPHIC or VARGRAPHIC
column to a DBCLOB locator host variable.

— Assign a GRAPHIC or VARGRAPHIC output parameter from a user-defined
function or stored procedure to a DBCLOB locator host variable.

— Use a SET assignment statement to assign a GRAPHIC or VARGRAPHIC
transition variable to a DBCLOB locator host variable.

— Use a VALUES INTO statement to assign a GRAPHIC or VARGRAPHIC
function parameter to a DBCLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a GRAPHIC
or VARGRAPHIC column to a DBCLOB locator host variable.

Datetime data types are compatible with character host variables. A DATE,
TIME, or TIMESTAMP column is compatible with a fixed-length or varying
length COBOL character host variable.

A BLOB column or a BLOB locator is compatible only with a BLOB host
variable.

The ROWID column is compatible only with a ROWID host variable.

A host variable is compatible with a distinct type if the host variable type is
compatible with the source type of the distinct type. For information on

assigning and comparing distinct types, see |Chapter 16, “Creating and usingl
[distinct types,” on page 357|

When necessary, DB2 automatically converts a fixed-length string to a
varying-length string, or a varying-length string to a fixed-length string.

206 Application Programming and SQL Guide

coBOL

Using indicator variables and indicator variable arrays

An indicator variable is a 2-byte integer (PIC S9(4) USAGE BINARY). An indicator
variable array is an array of 2-byte integers (PIC S9(4) USAGE BINARY). You use
indicator variables and indicator variable arrays in similar ways.

Using indicator variables: If you provide an indicator variable for the variable X,
when DB2 retrieves a null value for X, it puts a negative value in the indicator
variable and does not update X. Your program should check the indicator variable
before using X. If the indicator variable is negative, you know that X is null and
any value you find in X is irrelevant.

When your program uses X to assign a null value to a column, the program
should set the indicator variable to a negative number. DB2 then assigns a null
value to the column and ignores any value in X. For more information about
indicator variables, see [‘Using indicator variables with host variables” on page 79.|

Using indicator variable arrays: When you retrieve data into a host variable array,
if a value in its indicator array is negative, you can disregard the contents of the
corresponding element in the host variable array. For more information about
indicator variable arrays, see [“Using indicator variable arrays with host variablel
larrays” on page 83/

Declaring indicator variables: You declare indicator variables in the same way as
host variables. You can mix the declarations of the two types of variables in any
way that seems appropriate. You can define indicator variables as scalar variables
or as array elements in a structure form or as an array variable using a single level
OCCURS clause.

Example: The following example shows a FETCH statement with the declarations
of the host variables that are needed for the FETCH statement:
EXEC SQL FETCH CLS_CURSOR INTO :CLS-CD,
:DAY :DAY-IND,
:BGN :BGN-IND,
:END :END-IND
END-EXEC.

You can declare the variables as follows:
77 CLS-CD PIC X(7).

77 DAY PIC S9(4) BINARY.
77 BGN PIC X(8).
77 END PIC X(8).

77 DAY-IND PIC S9(4) BINARY.
77 BGN-IND PIC S9(4) BINARY.
77 END-IND PIC S9(4) BINARY.

[Figure 91 on page 208 shows the syntax for declarations of indicator variables.

Chapter 9. Embedding SQL statements in host languages 207

COBOL

77

».

01 variable-

IS

]
name——PICTURE S9(4) BINARY
| L

PIC 59999—| L IS COMPUTATIONAL-4—
USAGE—I_——I— COMP-4——

COMPUTATIONAL-5—
COMP-5
COMPUTATIONAL—
COMP

v

IS J
LVALUE—I_——I—constant

Figure 91. Indicator variable

Declaring indicator variable arrays: shows the syntax for valid indicator
array declarations.

BINARY
COMPUTATIONAL-4—
COMP-4
COMPUTATIONAL-5—
COMP-5
COMPUTATIONAL—

»—Zevel-1—variable-name—|:PICTURE |_ —l |_59(4)

IS

PIC

S9999—| L IS
usAge— 1|

A\
A

—OCCURS—dimension |_ _|
TIMES L IS J
VALUE constant

COMP-

Figure 92. Host structure indicator array

Notes:
1. level-1 must be an integer between 2 and 48.
2. dimension must be an integer constant between 1 and 32767.

Handling SQL error return codes

You can use the subroutine DSNTIAR to convert an SQL return code into a text
message. DSNTIAR takes data from the SQLCA, formats it into a message, and
places the result in a message output area that you provide in your application
program. For concepts and more information on the behavior of DSNTIAR, see
[“Calling DSNTIAR to display SQLCA fields” on page 94.|

You can also use the MESSAGE_TEXT condition item field of the GET
DIAGNOSTICS statement to convert an SQL return code into a text message.
Programs that require long token message support should code the GET
DIAGNOSTICS statement instead of DSNTIAR. For more information about GET
DIAGNOSTICS, see [“The GET DIAGNOSTICS statement” on page 90

208 Application Programming and SQL Guide

coBOL

DSNTIAR syntax
FCALL "DSNTIAR’ USING sqlca message Irecl.

The DSNTIAR parameters have the following meanings:

sqlca
An SQL communication area.

message
An output area, in VARCHAR format, in which DSNTIAR places the message
text. The first halfword contains the length of the remaining area; its minimum
value is 240.

The output lines of text, each line being the length specified in Irecl, are put
into this area. For example, you could specify the format of the output area as:
01 ERROR-MESSAGE.

02 ERROR-LEN PIC S9(4) COMP VALUE +1320.

02 ERROR-TEXT PIC X(132) OCCURS 10 TIMES

INDEXED BY ERROR-INDEX.
77 ERROR-TEXT-LEN PIC S9(9) COMP VALUE +132.

CALL 'DSNTIAR' USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.

where ERROR-MESSAGE is the name of the message output area containing
10 lines of length 132 each, and ERROR-TEXT-LEN is the length of each line.

Irecl
A fullword containing the logical record length of output messages, between 72
and 240.

An example of calling DSNTIAR from an application appears in the DB2 sample
assembler program DSN8BC3, which is contained in the library
DSN8810.SDSNSAMP. See |Appendix B, “Sample applications,” on page 935 for
instructions on how to access and print the source code for the sample program.

Chapter 9. Embedding SQL statements in host languages 209

COBOL

— CICS
If you call DSNTIAR dynamically from a CICS COBOL application program,
be sure you do the following:

* Compile the COBOL application with the NODYNAM option.
* Define DSNTIAR in the CSD.

If your CICS application requires CICS storage handling, you must use the
subroutine DSNTIAC instead of DSNTIAR. DSNTIAC has the following
syntax:

CALL 'DSNTIAC' USING eib commarea sqlca msg lrecl.

DSNTIAC has extra parameters, which you must use for calls to routines that
use CICS commands.

eib EXEC interface block

commarea communication area

For more information on these parameters, see the appropriate application
programming guide for CICS. The remaining parameter descriptions are the
same as those for DSNTIAR. Both DSNTIAC and DSNTIAR format the
SQLCA in the same way.

You must define DSNTIA1 in the CSD. If you load DSNTIAR or DSNTIAC,
you must also define them in the CSD. For an example of CSD entry
generation statements for use with DSNTIAC, see job DSNTEJ5A.

The assembler source code for DSNTIAC and job DSNTEJ5A, which
assembles and link-edits DSNTIAC, are in the data set prefix.SDSNSAMP.

Coding considerations for object-oriented extensions in
COBOL

When you use object-oriented extensions in a COBOL application, be aware of the
following considerations:

Where to place SQL statements in your application: A COBOL source data set or
member can contain the following elements:

* Multiple programs

* Multiple class definitions, each of which contains multiple methods

You can put SQL statements in only the first program or class in the source data
set or member. However, you can put SQL statements in multiple methods within
a class. If an application consists of multiple data sets or members, each of the data
sets or members can contain SQL statements.

Where to place the SQLCA, SQLDA, and host variable declarations: You can put
the SQLCA, SQLDA, and SQL host variable declarations in the
WORKING-STORAGE SECTION of a program, class, or method. An SQLCA or
SQLDA in a class WORKING-STORAGE SECTION is global for all the methods of
the class. An SQLCA or SQLDA in a method WORKING-STORAGE SECTION is
local to that method only.

If a class and a method within the class both contain an SQLCA or SQLDA, the
method uses the SQLCA or SQLDA that is local.

210 Application Programming and SQL Guide

coBOL

Rules for host variables: You can declare COBOL variables that are used as host
variables in the WORKING-STORAGE SECTION or LINKAGE-SECTION of a
program, class, or method. You can also declare host variables in the
LOCAL-STORAGE SECTION of a method. The scope of a host variable is the
method, class, or program within which it is defined.

Coding SQL statements in a Fortran application

This section helps you with the programming techniques that are unique to coding
SQL statements within a Fortran program.

Defining the SQL communication area

A Fortran program that contains SQL statements must include one or both of the
following host variables:

* An SQLCOD variable declared as INTEGER*4

* An SQLSTA (or SQLSTATE) variable declared as CHARACTER*5

Alternatively, you can include an SQLCA, which contains the SQLCOD and
SQLSTA variables.

DB2 sets the SQLCOD and SQLSTA (or SQLSTATE) values after each SQL
statement executes. An application can check these values to determine whether
the last SQL statement was successful. All SQL statements in the program must be
within the scope of the declaration of the SQLCOD and SQLSTA (or SQLSTATE)
variables.

Whether you define the SQLCOD or SQLSTA variable or an SQLCA in your
program depends on whether you specify the precompiler option STDSQL(YES) to
conform to SQL standard, or STDSQL(NO) to conform to DB2 rules.

If you specify STDSQL(YES)

When you use the precompiler option STDSQL(YES), do not define an SQLCA. If
you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors.

If you declare an SQLSTA (or SQLSTATE) variable, it must not be an element of a
structure. You must declare the host variables SQLCOD and SQLSTA within the
BEGIN DECLARE SECTION and END DECLARE SECTION statements in your
program declarations.

If you specify STDSQL(NO)

When you use the precompiler option STDSQL(NO), include an SQLCA explicitly.
You can code the SQLCA in a Fortran program, either directly or by using the SQL
INCLUDE statement. The SQL INCLUDE statement requests a standard SQLCA
declaration:

EXEC SQL INCLUDE SQLCA

See Chapter 5 of [DB2 SQL Reference| for more information about the INCLUDE
statement and Appendix D of [DB2 SQL Referencq for a complete description of
SQLCA fields.

Defining SQL descriptor areas

The following statements require an SQLDA:
¢ CALL..USING DESCRIPTOR descriptor-name
* DESCRIBE statement-name INTO descriptor-name

Chapter 9. Embedding SQL statements in host languages 211

FORTRAN

* DESCRIBE CURSOR host-variable INTO descriptor-name

* DESCRIBE INPUT statement-name INTO descriptor-name

* DESCRIBE PROCEDURE host-variable INTO descriptor-name
* DESCRIBE TABLE host-variable INTO descriptor-name

* EXECUTE...USING DESCRIPTOR descriptor-name

* FETCH...USING DESCRIPTOR descriptor-name

* OPEN...USING DESCRIPTOR descriptor-name

¢ PREPARE...INTO descriptor-name

Unlike the SQLCA, a program can have more than one SQLDA, and an SQLDA
can have any valid name. DB2 does not support the INCLUDE SQLDA statement
for Fortran programs. If present, an error message results.

A Fortran program can call a subroutine (written in C, PL/I or assembler
language) that uses the INCLUDE SQLDA statement to define the SQLDA and that
also includes the necessary SOL statements for the dynamic SQL functions you

want to perform. See [Chapter 24, “Coding dynamic SQL in application programs,”]
‘

n page 539|for more information about dynamic SQL.

You must place SQLDA declarations before the first SQL statement that references
the data descriptor.

Embedding SQL statements

Fortran source statements must be fixed-length 80-byte records. The DB2
precompiler does not support free-form source input.

You can code SQL statements in a Fortran program wherever you can place
executable statements. If the SQL statement is within an IF statement, the
precompiler generates any necessary THEN and END IF statements.

Each SQL statement in a Fortran program must begin with EXEC SQL. The EXEC
and SQL keywords must appear on one line, but the remainder of the statement
can appear on subsequent lines.

You might code the UPDATE statement in a Fortran program as follows:

EXEC SQL

C UPDATE DSN8810.DEPT

C SET MGRNO = :MGRNUM

C WHERE DEPTNO = :INTDEPT

You cannot follow an SQL statement with another SQL statement or Fortran
statement on the same line.

Fortran does not require blanks to delimit words within a statement, but the SQL
language requires blanks. The rules for embedded SQL follow the rules for SQL
syntax, which require you to use one or more blanks as a delimiter.

Comments: You can include Fortran comment lines within embedded SQL
statements wherever you can use a blank, except between the keywords EXEC and
SQL. You can include SQL comments in any embedded SQL statement.

The DB2 precompiler does not support the exclamation point (!) as a comment
recognition character in Fortran programs.

Continuation for SQL statements: The line continuation rules for SQL statements
are the same as those for Fortran statements, except that you must specify EXEC

212 Application Programming and SQL Guide

FORTRAN

SQL on one line. The SQL examples in this section have Cs in the sixth column to
indicate that they are continuations of EXEC SQL.

Declaring tables and views: Your Fortran program should also include the
DECLARE TABLE statement to describe each table and view the program accesses.

Dynamic SQL in a Fortran program: In general, Fortran programs can easily
handle dynamic SQL statements. SELECT statements can be handled if the data
types and the number of returned fields are fixed. If you want to use variable-list
SELECT statements, you need to use an SQLDA, as described in
[descriptor areas” on page 211

You can use a Fortran character variable in the statements PREPARE and
EXECUTE IMMEDIATE, even if it is fixed-length.

Including code: To include SQL statements or Fortran host variable declarations
from a member of a partitioned data set, use the following SQL statement in the
source code where you want to include the statements:

EXEC SQL INCLUDE member-name

You cannot nest SQL INCLUDE statements. You cannot use the Fortran INCLUDE
compiler directive to include SQL statements or Fortran host variable declarations.

Margins: Code the SQL statements between columns 7 through 72, inclusive. If
EXEC SQL starts before the specified left margin, the DB2 precompiler does not
recognize the SQL statement.

Names: You can use any valid Fortran name for a host variable. Do not use
external entry names that begin with 'DSN” or host variable names that begin with
'SQL’. These names are reserved for DB2.

Do not use the word DEBUG, except when defining a Fortran DEBUG packet. Do
not use the words FUNCTION, IMPLICIT, PROGRAM, and SUBROUTINE to
define variables.

Sequence numbers: The source statements that the DB2 precompiler generates do
not include sequence numbers.

Statement labels: You can specify statement numbers for SQL statements in
columns 1 to 5. However, during program preparation, a labeled SQL statement
generates a Fortran CONTINUE statement with that label before it generates the
code that executes the SQL statement. Therefore, a labeled SQL statement should
never be the last statement in a DO loop. In addition, you should not label SQL
statements (such as INCLUDE and BEGIN DECLARE SECTION) that occur before
the first executable SQL statement, because an error might occur.

WHENEVER statement: The target for the GOTO clause in the SQL WHENEVER
statement must be a label in the Fortran source code and must refer to a statement
in the same subprogram. The WHENEVER statement only applies to SQL
statements in the same subprogram.

Special Fortran considerations: The following considerations apply to programs
written in Fortran:

* You cannot use the @PROCESS statement in your source code. Instead, specify
the compiler options in the PARM field.

Chapter 9. Embedding SQL statements in host languages 213

FORTRAN

* You cannot use the SQL INCLUDE statement to include the following
statements: PROGRAM, SUBROUTINE, BLOCK, FUNCTION, or IMPLICIT.

DB2 supports Version 3 Release 1 (or later) of VS Fortran with the following
restrictions:

* The parallel option is not supported. Applications that contain SQL statements
must not use Fortran parallelism.

* You cannot use the byte data type within embedded SQL, because byte is not a
recognizable host data type.

Using host variables

You must explicitly declare each host variable that is used in SQL statements
before its first use. You cannot implicitly declare any host variables through default
typing or by using the IMPLICIT statement.

You can precede Fortran statements that define the host variables with a BEGIN
DECLARE SECTION statement and follow the statements with an END DECLARE
SECTION statement. You must use the BEGIN DECLARE SECTION and END
DECLARE SECTION statements when you use the precompiler option
STDSQL(YES).

A colon (:) must precede all host variables in an SQL statement.

The names of host variables should be unique within the program, even if the host
variables are in different blocks, functions, or subroutines.

When you declare a character host variable, you must not use an expression to
define the length of the character variable. You can use a character host variable
with an undefined length (for example, CHARACTER *(*)). The length of any such
variable is determined when its associated SQL statement executes.

An SQL statement that uses a host variable must be within the scope of the
statement that declares the variable.

Host variables must be scalar variables; they cannot be elements of vectors or
arrays (subscripted variables).

Be careful when calling subroutines that might change the attributes of a host
variable. Such alteration can cause an error while the program is running. See

QL Reference| for more information.

Declaring host variables

Only some of the valid Fortran declarations are valid host variable declarations. If
the declaration for a variable is not valid, any SQL statement that references the
variable might result in the message UNDECLARED HOST VARIABLE.

Numeric host variables: [Figure 93 on page 215/ shows the syntax for declarations of
numeric host variables.

214 Application Programming and SQL Guide

FORTRAN

> INTEGER*2———— Y variable-name ><

x4 |—/—numer*ic-cons tant—/J
INTEGER—I_——I—
*
REAL—L ||

REAL*8
DOUBLE PRECISION-

Figure 93. Numeric host variables

Character host variables: [Figure 94 shows the syntax for declarations of character
host variables other than CLOBs. See [Figure 96| for the syntax of CLOBs.

»>—CHARACTER Y _variable-name
|:*n:| |—*n—| I—/—charac ter-constan t‘—/—|

v
A

Figure 94. Character host variables

Result set locators: |Figure 9§| shows the syntax for declarations of result set
locators. See [Chapter 25, “Using stored procedures for client/server processing,” on|
|Eage 57§| for a discussion of how to use these host variables.

»—SQL TYPE IS—RESULT SET_LOCATOR—VARYING——variable-name >

Figure 95. Result set locators

LOB Variables and Locators: [Figure 96| shows the syntax for declarations of BLOB
and CLOB host variables and locators. See [Chapter 14, “Programming for large]
fobjects,” on page 289|for a discussion of how to use these host variables.

BLOB
CHARACTER LARGE O0BJ
CHAR LARGE OBJECT
CLOB
BLOB_LOCATOR
CLOB_LOCATOR

»»—SQL TYPE IS BINARY LARGE OBJECTT(—Zength) variable-name—— >«
ECT—

<

[ep}

Figure 96. LOB variables and locators

ROWIDs: |Figure 97 on page 216|shows the syntax for declarations of ROWID
variables. See|Chapter 14, “Programming for large objects,” on page 289 for a
discussion of how to use these host variables.

Chapter 9. Embedding SQL statements in host languages 215

FORTRAN

»»—SQL TYPE IS—ROWID—variable-name

A\
A

Figure 97. ROWID variables

Determining equivalent SQL and Fortran data types

describes the SQL data type, and base SQLTYPE and SQLLEN values, that
the precompiler uses for the host variables it finds in SQL statements. If a host
variable appears with an indicator variable, the SQLTYPE is the base SQLTYPE
plus 1.

Table 18. SQL data types the precompiler uses for Fortran declarations

SQLTYPE of host

Fortran data type variable SQLLEN of host variable SQL data type

INTEGER*2 500 2 SMALLINT

INTEGER*4 496 4 INTEGER

REAL*4 480 4 FLOAT (single precision)

REAL*8 480 8 FLOAT (double precision)

CHARACTER*n 452 n CHAR(n)

SQL TYPE IS 972 4 Result set locator. Do not use

RESULT_SET_LOCATOR this data type as a column type.

SQL TYPE IS BLOB_LOCATOR 960 4 BLOB locator. Do not use this
data type as a column type.

SQL TYPE IS CLOB_LOCATOR 964 4 CLOB locator. Do not use this
data type as a column type.

SQL TYPE IS BLOB(n) 404 n BLOB(n)

1=n=2147483647

SQL TYPE IS CLOB(n) 408 n CLOB(n)

1=n=2147483647

SQL TYPE IS ROWID 904 40 ROWID

helps you define host variables that receive output from the database. You
can use the table to determine the Fortran data type that is equivalent to a given
SQL data type. For example, if you retrieve TIMESTAMP data, you can use the
table to define a suitable host variable in the program that receives the data value.

shows direct conversions between DB2 data types and host data types.
However, a number of DB2 data types are compatible. When you do assignments
or comparisons of data that have compatible data types, DB2 does conversions
between those compatible data types. See [Table 1 on page 5| for information on
compatible data types.

Table 19. SQL data types mapped to typical Fortran declarations

SQL data type Fortran equivalent Notes
SMALLINT INTEGER*2
INTEGER INTEGER*4

216 Application Programming and SQL Guide

FORTRAN

Table 19. SQL data types mapped to typical Fortran declarations (continued)

SQL data type Fortran equivalent Notes

DECIMAL(p,s) or no exact equivalent Use REAL*8

NUMERIC(p,s)

FLOAT(n) single precision REAL*4 1<=n<=21

FLOAT(n) double precision =~ REAL*8 22<=n<=53

CHAR(n) CHARACTER*n 1<=n<=255

VARCHAR(n) no exact equivalent Use a character host variable that is large
enough to contain the largest expected
VARCHAR value.

GRAPHIC(n) not supported

VARGRAPHIC(n) not supported

DATE CHARACTER*n If you are using a date exit routine, 7 is
determined by that routine; otherwise, n
must be at least 10.

TIME CHARACTER*n If you are using a time exit routine, n is
determined by that routine. Otherwise, n
must be at least 6; to include seconds, n
must be at least 8.

TIMESTAMP CHARACTER*n n must be at least 19. To include

microseconds, 7 must be 26; if n is less
than 26, truncation occurs on the
microseconds part.

Result set locator

SQL TYPE IS RESULT_SET_LOCATOR

Use this data type only for receiving result
sets. Do not use this data type as a
column type.

BLOB locator

SQL TYPE IS BLOB_LOCATOR

Use this data type only to manipulate data
in BLOB columns. Do not use this data
type as a column type.

CLOB locator

SQL TYPE IS CLOB_LOCATOR

Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.

DBCLOB locator

not supported

BLOB(n) SQL TYPE IS BLOB(n) 1=n=2147483647
CLOB(n) SQL TYPE IS CLOB(n) 1=n=2147483647
DBCLOB(1n) not supported

ROWID SQL TYPE IS ROWID

Notes on Fortran variable declaration and usage
You should be aware of the following when you declare Fortran variables.

Fortran data types with no SQL equivalent: Fortran supports some data types
with no SQL equivalent (for example, REAL*16 and COMPLEX). In most cases,
you can use Fortran statements to convert between the unsupported data types

and the data types that SQL allows.

SQL data types with no Fortran equivalent: Fortran does not provide an
equivalent for the decimal data type. To hold the value of such a variable, you can

use:

Chapter 9. Embedding SQL statements in host languages 217

FORTRAN

* An integer or floating-point variable, which converts the value. If you choose
integer, however, you lose the fractional part of the number. If the decimal
number can exceed the maximum value for an integer or you want to preserve a
fractional value, you can use floating-point numbers. Floating-point numbers are
approximations of real numbers. When you assign a decimal number to a
floating-point variable, the result could be different from the original number.

* A character string host variable. Use the CHAR function to retrieve a decimal
value into it.

Special-purpose Fortran data types: The locator data types are Fortran data types
and SQL data types. You cannot use locators as column types. For information on
how to use these data types, see the following sections:

Result set locator

Chapter 25, “Using stored procedures for client/server processing,”|

on page 573|

LOB locators [Chapter 14, “Programming for large objects,” on page 289

Overflow: Be careful of overflow. For example, if you retrieve an INTEGER column
value into a INTEGER*2 host variable and the column value is larger than 32767 or
-32768, you get an overflow warning or an error, depending on whether you
provided an indicator variable.

Truncation: Be careful of truncation. For example, if you retrieve an 80-character
CHAR column value into a CHARACTER*70 host variable, the rightmost ten
characters of the retrieved string are truncated.

Retrieving a double-precision floating-point or decimal column value into an
INTEGER*4 host variable removes any fractional value.

Processing Unicode data: Because Fortran does not support graphic data types,
Fortran applications can process only Unicode tables that use UTF-8 encoding.

Notes on syntax differences for constants
You should be aware of the following syntax differences for constants.

Real constants: Fortran interprets a string of digits with a decimal point to be a
real constant. An SQL statement interprets such a string to be a decimal constant.
Therefore, use exponent notation when specifying a real (that is, floating-point)
constant in an SQL statement.

Exponent indicators: In Fortran, a real (floating-point) constant having a length of
8 bytes uses a D as the exponent indicator (for example, 3.14159D+04). An 8-byte
floating-point constant in an SQL statement must use an E (for example,
3.14159E+04).

Determining compatibility of SQL and Fortran data types

Host variables must be type compatible with the column values with which you

intend to use them.

* Numeric data types are compatible with each other. For example, if a column
value is INTEGER, you must declare the host variable as INTEGER*2,
INTEGER*4, REAL, REAL*4, REAL*8, or DOUBLE PRECISION.

* Character data types are compatible with each other. A CHAR, VARCHAR, or
CLOB column is compatible with Fortran character host variable.

218 Application Programming and SQL Guide

Using

FORTRAN

* Character data types are partially compatible with CLOB locators. You can
perform the following assignments:

— Assign a value in a CLOB locator to a CHAR or VARCHAR column

— Use a SELECT INTO statement to assign a CHAR or VARCHAR column to a
CLOB locator host variable.

— Assign a CHAR or VARCHAR output parameter from a user-defined function
or stored procedure to a CLOB locator host variable.

— Use a SET assignment statement to assign a CHAR or VARCHAR transition
variable to a CLOB locator host variable.

— Use a VALUES INTO statement to assigh a CHAR or VARCHAR function
parameter to a CLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a CHAR or
VARCHAR column to a CLOB locator host variable.

* Datetime data types are compatible with character host variables. A DATE,
TIME, or TIMESTAMP column is compatible with a Fortran character host
variable.

* A BLOB column or a BLOB locator is compatible only with a BLOB host
variable.

* The ROWID column is compatible only with a ROWID host variable.

* A host variable is compatible with a distinct type if the host variable type is
compatible with the source type of the distinct type. For information on
assigning and comparing distinct types, see [Chapter 16, “Creating and using
[distinct types,” on page 357,

indicator variables

An indicator variable is a 2-byte integer (INTEGER*2). If you provide an indicator
variable for the variable X, when DB2 retrieves a null value for X, it puts a
negative value in the indicator variable and does not update X. Your program
should check the indicator variable before using X. If the indicator variable is
negative, you know that X is null and any value you find in X is irrelevant.

When your program uses X to assign a null value to a column, the program
should set the indicator variable to a negative number. DB2 then assigns a null
value to the column and ignores any value in X.

You declare indicator variables in the same way as host variables. You can mix the
declarations of the two types of variables in any way that seems appropriate. For
more information about indicator variables, see [“Using indicator variables with|
lhost variables” on page 79.|

Example: The following example shows a FETCH statement with the declarations
of the host variables that are needed for the FETCH statement:

EXEC SQL FETCH CLS_CURSOR INTO :CLSCD,

C :DAY :DAYIND,
C :BGN :BGNIND,
C :END :ENDIND

You can declare variables as follows:

CHARACTER«=7 CLSCD

INTEGER*2 DAY

CHARACTER*8 BGN, END

INTEGER*2 ~ DAYIND, BGNIND, ENDIND

Chapter 9. Embedding SQL statements in host languages 219

FORTRAN

shows the syntax for declarations of indicator variables.

H

»»>—INTEGER*2—Y—variable-name

v
A

|—/—numeric-(:ons tan i,‘—/—|

Figure 98. Indicator variable

Handling SQL error return codes

You can use the subroutine DSNTIR to convert an SQL return code into a text
message. DSNTIR builds a parameter list and calls DSNTIAR for you. DSNTIAR
takes data from the SQLCA, formats it into a message, and places the result in a
message output area that you provide in your application program. For concepts
and more information on the behavior of DSNTIAR, see[Calling DSNTIAR to
[display SQLCA fields” on page 94.|

You can also use the MESSAGE_TEXT condition item field of the GET
DIAGNOSTICS statement to convert an SQL return code into a text message.
Programs that require long token message support should code the GET
DIAGNOSTICS statement instead of DSNTIAR. For more information about GET
DIAGNOSTICS, see [“The GET DIAGNOSTICS statement” on page 90

DSNTIR syntax
FCALL DSNTIR (error-length, message, return-code)

The DSNTIR parameters have the following meanings:

error-length
The total length of the message output area.

message
An output area, in VARCHAR format, in which DSNTIAR places the message
text. The first halfword contains the length of the remaining area; its minimum
value is 240.

The output lines of text are put into this area. For example, you could specify
the format of the output area as:

INTEGER ERRLEN /1320/
CHARACTER*132 ERRTXT(10)
INTEGER ICODE

éALL DSNTIR (ERRLEN, ERRTXT, ICODE)
where ERRLEN is the total length of the message output area, ERRTXT is the
name of the message output area, and ICODE is the return code.

return-code

Accepts a return code from DSNTIAR.

An example of calling DSNTIR (which then calls DSNTIAR) from an application
appears in the DB2 sample assembler program DSN8BF3, which is contained in the

220 Application Programming and SQL Guide

FORTRAN

library DSN8810.SDSNSAMP. See [Appendix B, “Sample applications,” on page 935
for instructions on how to access and print the source code for the sample
program.

Coding SQL statements in a PL/I application

This section helps you with the programming techniques that are unique to coding
SQL statements within a PL/I program.

Defining the SQL communication area

A PL/I program that contains SQL statements must include one or both of the
following host variables:

* An SQLCODE variable, declared as BIN FIXED (31)

* An SQLSTATE variable, declared as CHARACTER(5)

Alternatively, you can include an SQLCA, which contains the SQLCODE and
SQLSTATE variables.

DB2 sets the SQLCODE and SQLSTATE values after each SQL statement executes.
An application can check these values to determine whether the last SQL statement

was successful. All SQL statements in the program must be within the scope of the
declaration of the SQLCODE and SQLSTATE variables.

Whether you define the SQLCODE or SQLSTATE variable or an SQLCA in your
program depends on whether you specify the precompiler option STDSQL(YES) to
conform to SQL standard, or STDSQL(NO) to conform to DB2 rules.

If you specify STDSQL(YES)

When you use the precompiler option STDSQL(YES), do not define an SQLCA. If
you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors.

If you declare an SQLSTATE variable, it must not be an element of a structure. You
must declare the host variables SQLCODE and SQLSTATE within the BEGIN
DECLARE SECTION and END DECLARE SECTION statements in your program
declarations.

If you specify STDSQL(NO)

When you use the precompiler option STDSQL(NO), include an SQLCA explicitly.
You can code the SQLCA in a PL/I program, either directly or by using the SQL
INCLUDE statement. The SQL INCLUDE statement requests a standard SQLCA
declaration:

EXEC SQL INCLUDE SQLCA;

See Chapter 5 of [DB2 SQL Reference| for more information about the INCLUDE
statement and Appendix D of [DB2 SQL Reference for a complete description of
SQLCA fields.

Defining SQL descriptor areas

The following statements require an SQLDA:

e CALL ... USING DESCRIPTOR descriptor-name

* DESCRIBE statement-name INTO descriptor-name

* DESCRIBE CURSOR host-variable INTO descriptor-name

* DESCRIBE INPUT statement-name INTO descriptor-name

* DESCRIBE PROCEDURE host-variable INTO descriptor-name

Chapter 9. Embedding SQL statements in host languages 221

PL/I

* DESCRIBE TABLE host-variable INTO descriptor-name
* EXECUTE ... USING DESCRIPTOR descriptor-name

e FETCH ... USING DESCRIPTOR descriptor-name

* OPEN ... USING DESCRIPTOR descriptor-name

* PREPARE ... INTO descriptor-name

Unlike the SQLCA, a program can have more than one SQLDA, and an SQLDA
can have any valid name. You can code an SQLDA in a PL/I program, either
directly or by using the SQL INCLUDE statement. Using the SQL INCLUDE
statement requests a standard SQLDA declaration:

EXEC SQL INCLUDE SQLDA;

You must declare an SQLDA before the first SQL statement that references that
data descriptor, unless you use the precompiler option TWOPASS. See Chapter 5 of

B2 SQL Referencel for more information about the INCLUDE statement and
Appendix E of DB2 SQL Referencd for a complete description of SQLDA fields.
Embedding SQL statements

The first statement of the PL/I program must be the PROCEDURE statement with
OPTIONS(MAIN), unless the program is a stored procedure. A stored procedure
application can run as a subroutine. See [Chapter 25, “Using stored procedures for|
[client/server processing,” on page 573 for more information.

You can code SQL statements in a PL/I program wherever you can use executable
statements.

Each SQL statement in a PL/I program must begin with EXEC SQL and end with
a semicolon (;). The EXEC and SQL keywords must appear must appear on one
line, but the remainder of the statement can appear on subsequent lines.

You might code an UPDATE statement in a PL/I program as follows:

EXEC SQL UPDATE DSN8810.DEPT
SET MGRNO = :MGR_NUM
WHERE DEPTNO = :INT_DEPT ;

Comments: You can include PL/I comments in embedded SQL statements
wherever you can use a blank, except between the keywords EXEC and SQL. You
can also include SQL comments in any SQL statement.

To include DBCS characters in comments, you must delimit the characters by a
shift-out and shift-in control character; the first shift-in character in the DBCS
string signals the end of the DBCS string.

Continuation for SQL statements: The line continuation rules for SQL statements
are the same as those for other PL/I statements, except that you must specify
EXEC SQL on one line.

Declaring tables and views: Your PL/I program should include a DECLARE
TABLE statement to describe each table and view the program accesses. You can
use the DB2 declarations generator (DCLGEN) to generate the DECLARE TABLE
statements. For more information, see [Chapter 8, “Generating declarations for your|
ftables using DCLGEN,” on page 127

Including code: You can use SQL statements or PL/I host variable declarations
from a member of a partitioned data set by using the following SQL statement in
the source code where you want to include the statements:

222 Application Programming and SQL Guide

PL/I

EXEC SQL INCLUDE member-name;

You cannot nest SQL INCLUDE statements. Do not use the PL/I %INCLUDE
statement to include SQL statements or host variable DCL statements. You must
use the PL/I preprocessor to resolve any %INCLUDE statements before you use
the DB2 precompiler. Do not use PL/I preprocessor directives within SQL
statements.

Margins: Code SQL statements in columns 2 through 72, unless you have specified
other margins to the DB2 precompiler. If EXEC SQL starts before the specified left
margin, the DB2 precompiler does not recognize the SQL statement.

Names: You can use any valid PL/I name for a host variable. Do not use external
entry names or access plan names that begin with 'DSN’, and do not use host
variable names that begin with ‘SQL’. These names are reserved for DB2.

Sequence numbers: The source statements that the DB2 precompiler generates do
not include sequence numbers. IEL0378I messages from the PL/I compiler identify
lines of code without sequence numbers. You can ignore these messages.

Statement labels: You can specify a statement label for executable SQL statements.
However, the INCLUDE text-file-name and END DECLARE SECTION statements
cannot have statement labels.

Whenever statement: The target for the GOTO clause in an SQL statement
WHENEVER must be a label in the PL/I source code and must be within the
scope of any SQL statements that WHENEVER affects.

Using double-byte character set (DBCS) characters: The following considerations
apply to using DBCS in PL/I programs with SQL statements:

* If you use DBCS in the PL/I source, DB2 rules for the following language
elements apply:
— Graphic strings
— Graphic string constants

Host identifiers

Mixed data in character strings

MIXED DATA option

See Chapter 2 of [DB2 SQL Referencd for detailed information about these
language elements.

* The PL/I preprocessor transforms the format of DBCS constants. If you do not
want that transformation, run the DB2 precompiler before the preprocessor.

* If you use graphic string constants or mixed data in dynamically prepared SQL
statements, and if your application requires the PL/I Version 2 (or later)
compiler, the dynamically prepared statements must use the PL/I mixed
constant format.

— If you prepare the statement from a host variable, change the string
assignment to a PL/I mixed string.

— If you prepare the statement from a PL/I string, change that to a host
variable, and then change the string assignment to a PL/I mixed string.

Example:

SQLSTMT = 'SELECT <dbdb> FROM table-name'M;
EXEC SQL PREPARE STMT FROM :SQLSTMT;

Chapter 9. Embedding SQL statements in host languages 223

PL/I

For instructions on preparing SQL statements dynamically, see [Chapter 24)
[“Coding dynamic SQL in application programs,” on page 539.|

 If you want a DBCS identifier to resemble a PL/I graphic string, you must use a
delimited identifier.

* If you include DBCS characters in comments, you must delimit the characters
with a shift-out and shift-in control character. The first shift-in character signals
the end of the DBCS string.

* You can declare host variable names that use DBCS characters in PL/I
application programs. The rules for using DBCS variable names in PL/I follow
existing rules for DBCS SQL ordinary identifiers, except for length. The
maximum length for a host variable is 64 single-byte characters in DB2. See
Chapter 2 of [DB2 SQL Referencd for the rules for DBCS SQL ordinary identifiers.

Restrictions:

— DBCS variable names must contain DBCS characters only. Mixing single-byte
character set (SBCS) characters with DBCS characters in a DBCS variable
name produces unpredictable results.

— A DBCS variable name cannot continue to the next line.

* The PL/I preprocessor changes non-Kanji DBCS characters into extended binary
coded decimal interchange code (EBCDIC) SBCS characters. To avoid this
change, use Kanji DBCS characters for DBCS variable names, or run the PL/I
compiler without the PL/I preprocessor.

Special PL/I considerations: The following considerations apply to programs
written in PL/I:

* When compiling a PL/I program that includes SQL statements, you must use
the PL/I compiler option CHARSET (60 EBCDIC).

* In unusual cases, the generated comments in PL/I can contain a semicolon. The
semicolon generates compiler message IEL02391, which you can ignore.

* The generated code in a PL/I declaration can contain the ADDR function of a
field defined as character varying. This produces either message IBM1051 1 or
IBM11801 W, both of which you can ignore.

* The precompiler generated code in PL/I source can contain the NULL()
function. This produces message IEL0533I, which you can ignore unless you also
use NULL as a PL/I variable. If you use NULL as a PL/I variable in a DB2
application, you must also declare NULL as a built-in function (DCL NULL
BUILTIN;) to avoid PL/I compiler errors.

* The PL/I macro processor can generate SQL statements or host variable DCL
statements if you run the macro processor before running the DB2 precompiler.

If you use the PL/I macro processor, do not use the PL/I *PROCESS statement
in the source to pass options to the PL/I compiler. You can specify the needed
options on the COPTION parameter of the DSNH command or the option
PARM.PLI=options of the EXEC statement in the DSNHPLI procedure.

* Using the PL/I multitasking facility, in which multiple tasks execute SQL
statements, causes unpredictable results. See the RUN(DSN) command in Part 3
of [DB2 Command Reference]

Using host variables and host variable arrays

You must explicitly declare all host variables and all host variable arrays before
their first use in SQL statements, unless you specify the precompiler option
TWOPASS. If you specify the precompiler option TWOPASS, you must declare a
host variable before its use in the statement DECLARE CURSOR.

224 Application Programming and SQL Guide

PL/I

You can precede PL/I statements that define the host variables and host variable
arrays with the BEGIN DECLARE SECTION statement, and follow the statements
with the END DECLARE SECTION statement. You must use the BEGIN DECLARE
SECTION and END DECLARE SECTION statements when you use the
precompiler option STDSQL(YES).

A colon (:) must precede all host variables and host variable arrays in an SQL

statement, with the following exception. If the SQL statement meets the following

conditions, a host variable or host variable array in the SQL statement cannot be

preceded by a colon:

* The SQL statement is an EXECUTE IMMEDIATE or PREPARE statement.

* The SQL statement is in a program that also contains a DECLARE VARIABLE
statement.

* The host variable is part of a string expression, but the host variable is not the
only component of the string expression.

The names of host variables and host variable arrays should be unique within the
program, even if the variables and variable arrays are in different blocks or
procedures. You can qualify the names with a structure name to make them
unique.

An SQL statement that uses a host variable or host variable array must be within
the scope of the statement that declares that variable or array. You define host
variable arrays for use with multiple-row FETCH and multiple-row INSERT
statements.

Declaring host variables

Only some of the valid PL/I declarations are valid host variable declarations. The
precompiler uses the data attribute defaults that are specified in the PL/I
DEFAULT statement. If the declaration for a host variable is not valid, any SQL
statement that references the variable might result in the message UNDECLARED
HOST VARIABLE.

The precompiler uses only the names and data attributes of the variables; it ignores
the alignment, scope, and storage attributes. Even though the precompiler ignores
alignment, scope, and storage, if you ignore the restrictions on their use, you might
have problems compiling the PL/I source code that the precompiler generates.
These restrictions are as follows:

* A declaration with the EXTERNAL scope attribute and the STATIC storage
attribute must also have the INITIAL storage attribute.

* If you use the BASED storage attribute, you must follow it with a PL/I
element-locator-expression.

* Host variables can be STATIC, CONTROLLED, BASED, or AUTOMATIC storage
class, or options. However, CICS requires that programs be reentrant.

Numeric host variables: [Figure 99 on page 226|shows the syntax for declarations of
numeric host variables.

Chapter 9. Embedding SQL statements in host languages 225

PL/I

FIXED

DECLARE variable-name
DCLJ_[——
(v

variable-name—

)

BINARY
BINJ
DECIMAL

DEC

FLOAT—(—precision—)

P]
—precision)
,scale

I—Alignment and/or Scope and/or Storage—l

Figure 99. Numeric host variables

Notes:

1. You can specify host variable attributes in any order that is acceptable to PL/I.

For example, BIN FIXED(31), BINARY FIXED(31), BIN(31) FIXED, and FIXED
BIN(31) are all acceptable.

2. You can specify a scale only for DECIMAL FIXED.

Character host variables: [Figure 100 shows the syntax for declarations of character

host variables, other than CLOBs. See |Figure 104 on page 227 for the syntax of

CLOB:s.

> DECLARE variable-name
DCLJ_[e
(v

variable-name—

N

CHARACTER (—length—)
CHAR——I_ I:VARYING—

VAR——

|—Alignment and/or Scope and/or Storage—|

Figure 100. Character host variables

Graphic host variables: |ﬁigure 101| shows the syntax for declarations of graphic

host variables, other than DBCLOBs. See [Figure 104 on page 227| for the syntax of

DBCLOBs.

variable-name—

> DECLARE variable-name GRAPHIC—(—1length—)
DCL——’_|:] i:VARYING—
’, VAR—
(— —

)

|—Alignment and/or Scope and/or Storage—l

\4
A

Figure 101. Graphic host variables

Result set locators: |Figure 102 on page 227|shows the syntax for declarations of
result set locators. See [Chapter 25, “Using stored procedures for client/server|

[processing,” on page 573[for a discussion of how to use these host variables.

226 Application Programming and SQL Guide

PL/I

DECLARE variable-name
DCL s

SQL TYPE IS—RESULT_SET_LOCATOR—VARYI

=
[y}
4

(—Y-variable-name——)

I—Alignment and/or Scope and/or Stor‘age—l

Figure 102. Result set locators

Table locators: [Figure 103 shows the syntax for declarations of table locators. See
“ Accessing transition tables in a user-defined function or stored procedure” onl|
page 33§| for a discussion of how to use these host variables.

DCL: variable-name SQL TYPE IS—TABLE LIKE—table-name—AS LOCATOR———— >«
DECLARE ,
(—Y-variable-name——)

Figure 103. Table locators

LOB variables and locators: shows the syntax for declarations of BLOB,
CLOB, and DBCLOB host variables and locators. See [Chapter 14, “Programming|
ffor large objects,” on page 289| for a discussion of how to use these host variables.

A single PL/I declaration that contains a LOB variable declaration is limited to no
more than 1000 lines of source code.

DCL- variable-name
DECLARE R

SQL TYPE IS >

(—-variable-name——)

\

BINARY LARGE OBJECT—I——(—length) ><
BLOB —K—
—ECHARACTER LARGE OBJECT—— M

CHAR LARGE OBJECT
CLOB
LDBCLOB
BLOB_LOCATOR
- CLOB_LOCATOR—
L_DBCLOB_LOCATOR—

Figure 104. LOB variables and locators

Note: Variable attributes such as STATIC and AUTOMATIC are ignored if
specified on a LOB variable declaration.

ROWIDs: |Figure 105 on page 228 shows the syntax for declarations of ROWID
host variables. See|Chapter 14, “Programming for large objects,” on page 289 for a
discussion of how to use these host variables.

Chapter 9. Embedding SQL statements in host languages 227

PL/I

DCL
DECLARE:|

(

variable-nameTSQL TYPE IS—ROWID
Y variable-name——)

A\
A

Figure 105. ROWID variables

Declaring host variable arrays

Only some of the valid PL/I declarations are valid host variable array declarations.
The precompiler uses the data attribute defaults that are specified in the PL/I
DEFAULT statement. If the declaration for a variable array is not valid, then any
SQL statement that references the host variable array might result in the message
UNDECLARED HOST VARIABLE ARRAY.

The precompiler uses only the names and data attributes of the variable arrays; it
ignores the alignment, scope, and storage attributes. Even though the precompiler
ignores alignment, scope, and storage, if you ignore the restrictions on their use,
you might have problems compiling the PL/I source code that the precompiler
generates. These restrictions are as follows:

* A declaration with the EXTERNAL scope attribute and the STATIC storage
attribute must also have the INITIAL storage attribute.

* If you use the BASED storage attribute, you must follow it with a PL/I
element-locator-expression.

* Host variables can be STATIC, CONTROLLED, BASED, or AUTOMATIC storage
class or options. However, CICS requires that programs be reentrant.

Declaring host variable arrays: You must specify the ALIGNED attribute when
you declare varying-length character arrays or varying-length graphic arrays that
are to be used in multiple-row INSERT and FETCH statements.

Numeric host variable arrays: shows the syntax for declarations of
numeric host variable arrays.

DECLARE
DCL

(

var‘iabZe—nameT(—dimens ion—)
(—variable-name——)

B

v

variable-name— (—dimension—))

DEC

BINARY FIXED »
BINJ l—(—precision—l_—_l—)—l
DECIMAL ,scale

FLOAT—(—precision—)

I—Alz‘gnment and/or Scope and/or Stor‘age—l

Y
A

Figure 106. Numeric host variable arrays

228 Application Programming and SQL Guide

PL/I

Notes:

1. You can specify host variable array attributes in any order that is acceptable to
PL/1. For example, BIN FIXED(31), BINARY FIXED(31), BIN(31) FIXED, and
FIXED BIN(31) are all acceptable.

2. You can specify the scale for only DECIMAL FIXED.
3. dimension must be an integer constant between 1 and 32767.

Example: The following example shows a declaration of an indicator array:
DCL IND_ARRAY(100) BIN FIXED(15); /+ DCL ARRAY of 100 indicator variables */

Character host variable arrays: shows the syntax for declarations of
character host variable arrays, other than CLOBs. See [Figure 109 on page 23(} for
the syntax of CLOBs.

DECLARE
DCL

CHARACTER: (—length—)
CHAR——I_ i:VARYING— |—Alignmeni.‘ and/or Scope and/or Storage—l

v

variabZe-nameT(—dimension—)
(—-variable-name——)

v

variable-name— (—dimension—))

A\
A

VAR———

Figure 107. Character host variable arrays

Notes:
1. dimension must be an integer constant between 1 and 32767.

Example: The following example shows the declarations needed to retrieve 10
rows of the department number and name from the department table:

DCL DEPTNO(10) CHAR(3); /* Array of ten CHAR(3) variables */
DCL DEPTNAME(10) CHAR(29) VAR; /* Array of ten VARCHAR(29) variables */

Graphic host variable arrays: [Figure 108 on page 230 shows the syntax for
declarations of graphic host variable arrays, other than DBCLOBs. See

for the syntax of DBCLOBs.

Chapter 9. Embedding SQL statements in host languages 229

PL/I

DECLARE
DCL

»—GRAPHIC—(—Ilength—) ii

variable-name (—dimension—) >

(—Y-variable-name——)

(—Y-variable-name—(—dimension—))

A\
A

VARY ING— |—Alignment and/or Scope and/or Storage—l
VAR——

Figure 108. Graphic host variable arrays

Notes:

1. dimension must be an integer constant between 1 and 32767.

LOB variable arrays and locators: shows the syntax for declarations of
BLOB, CLOB, and DBCLOB host variable arrays and locators. See
[‘Programming for large objects,” on page 289|for a discussion of how to use these
host variables.

DCL
DECLARE

Y

BLOB

(—dimension—)——SQL TYPE IS

v

variable-name

(—variable-name——)

H

(—Y-variable-name—(—dimension—))

BINARY LARGE O0BJ ECT—I——(—length) ><

L K—]

CLOB

CHARACTER LARGE OBJECT—— M
—ECHAR LARGE OBJECT G

—DBCLOB

BLOB LOCATOR

—CLOB LOCATOR—
—DBCLOB LOCATOR—

Figure 109. LOB variable arrays and locators

Notes:
1. dimension must be an integer constant between 1 and 32767.

ROWIDs: [Figure 110 on page 231|shows the syntax for declarations of ROWID
variable arrays. See [Chapter 14, “Programming for large objects,” on page 289 for a
discussion of how to use these host variables.

230 Application Programming and SQL Guide

PL/I

A\
A

DCL- variable-name (—dimension—)——SQL TYPE IS—ROWID
DECLARE ’7,—
(—Y-variable-name——)

(—Y-variable-name—(—dimension—))

Figure 110. ROWID variable arrays

Notes:
1. dimension must be an integer constant between 1 and 32767.

Using host structures

A PL/I host structure name can be a structure name whose subordinate levels
name scalars. For example:

DCL 1 A,
2

s

B
3 C1 CHAR(...),
3 C2 CHAR(...);

In this example, B is the name of a host structure consisting of the scalars C1 and
C2.

You can use the structure name as shorthand notation for a list of scalars. You can
qualify a host variable with a structure name (for example, STRUCTURE.FIELD).
Host structures are limited to two levels. You can think of a host structure for DB2
data as a named group of host variables.

You must terminate the host structure variable by ending the declaration with a
semicolon. For example:
DCL 1 A,
2 B CHAR,
2 (C, D) CHAR;
DCL (E, F) CHAR;

You can specify host variable attributes in any order that is acceptable to PL/I. For
example, BIN FIXED(31), BIN(31) FIXED, and FIXED BIN(31) are all acceptable.

[Figure 111 on page 232| shows the syntax for declarations of host structures.

Chapter 9. Embedding SQL statements in host languages 231

PL/I

DECLARE level-1—variable-name |_ _| . >
DCL Scope and/or storage
> level-2 L'var-l J data-type-specification ; ><
(—var-2—1—)

Figure 111. Host structures

shows the syntax for data types that are used within declarations of
host structures.

[. BINARY FIXED
BINJ
DECIMAL
DEC FLOAT
|—(—pr‘ecision—)—|

CHARACTER
—[CHARQ |—(—in teger—)—l i:VARY ING—

VARY——

—GRAPHIC |— _|
(—integer—) i:VARYING—
VARY——

Y
A

)

|—(—pr'ecision
I—,—scale—|

—SQL TYPE IS—ROWID
—LOB data type

Figure 112. Data type specification

shows the syntax for LOB data types that are used within declarations
of host structures.

»»—SQL TYPE IS BINARY LARGE OBJECT—I——(—Zength) ><
BLOB —
—ECHARACTER LARGE OBJECT——

~
|

<

CHAR LARGE OBJECT
CLOB
L_DBCLOB
—BLOB_LOCATOR
CLOB_LOCATOR
L_DBCLOB_LOCATOR

o

Figure 113. LOB data type

Determining equivalent SQL and PL/I data types
[Table 20 on page 233| describes the SQL data type, and base SQLTYPE and
SQLLEN values, that the precompiler uses for the host variables it finds in SQL

statements. If a host variable appears with an indicator variable, the SQLTYPE is
the base SQLTYPE plus 1.

232 Application Programming and SQL Guide

PL/I

Table 20. SQL data types the precompiler uses for PL/I declarations
SQLTYPE of host

PL/I data type variable SQLLEN of host variable SQL data type

BIN FIXED(n) 1<=n<=15 500 2 SMALLINT

BIN FIXED(n) 16<=n<=31 496 4 INTEGER

DEC FIXED(p,s) O<=p<=31 and 484 p in byte 1, s in byte 2 DECIMAL(p,s)

O<=s<=p"

BIN FLOAT(p) 1<=p<=21 480 4 REAL or FLOAT(n) 1<=n<=21

BIN FLOAT(p) 22<=p<=53 480 8 DOUBLE PRECISION or
FLOAT(n) 22<=n<=53

DEC FLOAT(m) 1<=m<=6 480 4 FLOAT (single precision)

DEC FLOAT(m) 7<=m<=16 480 8 FLOAT (double precision)

CHAR(n) 452 n CHAR(n)

CHAR(n) VARYING 1<=n<=255 448 n VARCHAR(n)

CHAR(n) VARYING n>255 456 n VARCHAR(n)

GRAPHIC(n) 468 n GRAPHIC(n)

GRAPHIC(n) VARYING 464 n VARGRAPHIC(n)

1<=n<=127

GRAPHIC(n) VARYING n>127 472 n VARGRAPHIC(n)

SQL TYPE IS 972 4 Result set locator?

RESULT_SET_LOCATOR

SQL TYPE IS TABLE LIKE 976 4 Table locator”

table-name AS LOCATOR

SQL TYPE IS BLOB_LOCATOR 960 4 BLOB locator?

SQL TYPE IS CLOB_LOCATOR 964 4 CLOB locator?

SQL TYPE IS 968 4 DBCLOB locator?

DBCLOB_LOCATOR

SQL TYPE IS BLOB(n) 404 n BLOB(n)

1=n=2147483647

SQL TYPE IS CLOB(n) 408 n CLOB(n)

1=n=2147483647

SQL TYPE IS DBCLOB(n) 412 n DBCLOB(n)?

1=1=1073741823>

SQL TYPE IS ROWID 904 40 ROWID

Notes:

1. If p=0, DB2 interprets it as DECIMAL(31). For example, DB2 interprets a PL/I data type of DEC FIXED(0,0) to be
DECIMAL(31,0), which equates to the SQL data type of DECIMAL(31,0).

2. Do not use this data type as a column type.

3. nis the number of double-byte characters.

[Table 21 on page 234] helps you define host variables that receive output from the
database. You can use the table to determine the PL/I data type that is equivalent
to a given SQL data type. For example, if you retrieve TIMESTAMP data, you can
use the table to define a suitable host variable in the program that receives the
data value.

Chapter 9. Embedding SQL statements in host languages 233

PL/I

shows direct conversions between DB2 data types and host data types.
However, a number of DB2 data types are compatible. When you do assignments
or comparisons of data that have compatible data types, DB2 does conversions
between those compatible data types. See [Table 1 on page 5| for information on

compatible data types.

Table 21. SQL data types mapped to typical PL/I declarations

SQL data type PL/I equivalent Notes

SMALLINT BIN FIXED(n) 1<=n<=15

INTEGER BIN FIXED(n) 16<=n<=31

DECIMAL(p,s) or If p<16: DEC FIXED(p) or DEC p is precision; s is scale. 1<=p<=31 and
NUMERIC(p,s) FIXED(p,s) O<=s<=p

If p>15, the PL/I compiler must support
31-digit decimal variables.

REAL or FLOAT(n)

BIN FLOAT(p) or DEC FLOAT(m)

1<=n<=21, 1<=p<=21, and 1<=m<=6

DOUBLE PRECISION,
DOUBLE, or FLOAT(n)

BIN FLOAT(p) or DEC FLOAT(m)

22<=n<=53, 22<=p<=53, and 7<=m<=16

CHAR(n) CHAR(n) 1<=n<=255

VARCHAR(n) CHAR(n) VAR

GRAPHIC(n) GRAPHIC(n) n refers to the number of double-byte
characters, not to the number of bytes.
1<=n<=127

VARGRAPHIC(n) GRAPHIC(n) VAR n refers to the number of double-byte
characters, not to the number of bytes.

DATE CHAR(n) If you are using a date exit routine, that
routine determines 1; otherwise, n must be
at least 10.

TIME CHAR(n) If you are using a time exit routine, that
routine determines n. Otherwise, n must
be at least 6; to include seconds, n must be
at least 8.

TIMESTAMP CHAR(n) n must be at least 19. To include

microseconds, n must be 26; if 1 is less
than 26, the microseconds part is
truncated.

Result set locator

SQL TYPE IS RESULT_SET_LOCATOR

Use this data type only for receiving result
sets. Do not use this data type as a
column type.

Table locator

SQL TYPE IS TABLE LIKE table-name AS

LOCATOR

Use this data type only in a user-defined
function or stored procedure to receive
rows of a transition table. Do not use this
data type as a column type.

BLOB locator

SQL TYPE IS BLOB_LOCATOR

Use this data type only to manipulate data
in BLOB columns. Do not use this data
type as a column type.

CLOB locator

SQL TYPE IS CLOB_LOCATOR

Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.

DBCLOB locator

SQL TYPE IS DBCLOB_LOCATOR

Use this data type only to manipulate data
in DBCLOB columns. Do not use this data
type as a column type.

234 Application Programming and SQL Guide

PL/I

Table 21. SQL data types mapped to typical PL/I declarations (continued)

SQL data type PL/T equivalent Notes

BLOB(n) SQL TYPE IS BLOB(n) 1=n=2147483647

CLOB(n) SQL TYPE IS CLOB(n) 1=n=2147483647

DBCLOB(n) SQL TYPE IS DBCLOB(n) n is the number of double-byte characters.
1=n=1073741823

ROWID SQL TYPE IS ROWID

Notes on PL/I variable declaration and usage
You should be aware of the following when you declare PL/I variables.

PL/I data types with no SQL equivalent: PL/I supports some data types with no
SQL equivalent (COMPLEX and BIT variables, for example). In most cases, you can
use PL/I statements to convert between the unsupported PL/I data types and the
data types that SQL supports.

SQL data types with no PL/I equivalent: If the PL/I compiler you are using does
not support a decimal data type with a precision greater than 15, use the following
types of variables for decimal data:

¢ Decimal variables with precision less than or equal to 15, if the actual data
values fit. If you retrieve a decimal value into a decimal variable with a scale
that is less than the source column in the database, the fractional part of the
value might truncate.

* An integer or a floating-point variable, which converts the value. If you choose
integer, you lose the fractional part of the number. If the decimal number can
exceed the maximum value for an integer or you want to preserve a fractional
value, you can use floating-point numbers. Floating-point numbers are
approximations of real numbers. When you assign a decimal number to a
floating- point variable, the result could be different from the original number.

* A character string host variable. Use the CHAR function to retrieve a decimal
value into it.

Floating-point host variables: All floating-point data is stored in DB2 in

System /390 hexadecimal floating-point format. However, your host variable data
can be in System/390 hexadecimal floating-point format or IEEE binary
floating-point format. DB2 uses the FLOAT precompiler option to determine
whether your floating-point host variables are in IEEE binary floating-point format
or System/390 hexadecimal floating-point format. DB2 does no checking to
determine whether the host variable declarations or format of the host variable
contents match the precompiler option. Therefore, you need to ensure that your
floating-point host variable types and contents match the precompiler option.

Special purpose PL/I data types: The locator data types are PL/I data types as well
as SQL data types. You cannot use locators as column types. For information on
how to use these data types, see the following sections:

Result set locator
Chapter 25, “Using stored procedures for client/server processing,”|
on page 573

Table locator |[“Accessing transition tables in a user-defined function or stored|
procedure” on page 335

LOB locators |[Chapter 14, “Programming for large objects,” on page 289)

Chapter 9. Embedding SQL statements in host languages 235

PL/I

PL/I scoping rules: The precompiler does not support PL/I scoping rules.

Overflow: Be careful of overflow. For example, if you retrieve an INTEGER column
value into a BIN FIXED(15) host variable and the column value is larger than
32767 or smaller than -32768, you get an overflow warning or an error, depending
on whether you provided an indicator variable.

Truncation: Be careful of truncation. For example, if you retrieve an 80-character
CHAR column value into a CHAR(70) host variable, the rightmost ten characters
of the retrieved string are truncated.

Retrieving a double-precision floating-point or decimal column value into a BIN
FIXED(31) host variable removes any fractional part of the value.

Similarly, retrieving a column value with a DECIMAL data type into a PL/I
decimal variable with a lower precision might truncate the value.

Determining compatibility of SQL and PL/I data types

When you use PL/I host variables in SQL statements, the variables must be type

compatible with the columns with which you use them.

* Numeric data types are compatible with each other. A SMALLINT, INTEGER,
DECIMAL, or FLOAT column is compatible with a PL/I host variable of BIN
FIXED(15), BIN FIXED(31), DECIMAL(s,p), or BIN FLOAT(n), where n is from 1
to 53, or DEC FLOAT(m) where m is from 1 to 16.

* Character data types are compatible with each other. A CHAR, VARCHAR, or
CLOB column is compatible with a fixed-length or varying-length PL/I character
host variable.

* Character data types are partially compatible with CLOB locators. You can
perform the following assignments:

— Assign a value in a CLOB locator to a CHAR or VARCHAR column.

— Use a SELECT INTO statement to assign a CHAR or VARCHAR column to a
CLOB locator host variable.

— Assign a CHAR or VARCHAR output parameter from a user-defined function
or stored proc